Java idiomatic SDK for the Gemini Developer APIs and Vertex AI APIs.
If you're using Maven, add the following to your dependencies: //: # ({x-version-update-start:google-genai:released})
<dependencies>
<dependency>
<groupId>com.google.genai</groupId>
<artifactId>google-genai</artifactId>
<version>1.10.0</version>
</dependency>
</dependencies>
Follow the instructions in this section to get started using the Google Gen AI SDK for Java.
The Google Gen AI Java SDK provides a Client class, simplifying interaction with both the Gemini API and Vertex AI API. With minimal configuration, you can seamlessly switch between the 2 backends without rewriting your code.
import com.google.genai.Client;
// Use Builder class for instantiation. Explicitly set the API key to use Gemini
// Developer backend.
Client client = Client.builder().apiKey("your-api-key").build();
import com.google.genai.Client;
// Use Builder class for instantiation. Explicitly set the project and location,
// and set `vertexAI(true)` to use Vertex AI backend.
Client client = Client.builder()
.project("your-project")
.location("your-location")
.vertexAI(true)
.build();
import com.google.genai.Client;
// Explicitly set the `apiKey` and `vertexAI(true)` to use Vertex AI backend
// in express mode.
Client client = Client.builder()
.apiKey("your-api-key")
.vertexAI(true)
.build();
You can create a client by configuring the necessary environment variables. Configuration setup instructions depends on whether you're using the Gemini Developer API or the Gemini API in Vertex AI.
Gemini Developer API: Set the GOOGLE_API_KEY
. It will automatically be
picked up by the client. Note that GEMINI_API_KEY
is a legacy environment
variable, it's recommended to use GOOGLE_API_KEY
only. But if both are set,
GOOGLE_API_KEY
takes precedence.
export GOOGLE_API_KEY='your-api-key'
Gemini API on Vertex AI: Set GOOGLE_GENAI_USE_VERTEXAI
,
GOOGLE_CLOUD_PROJECT
and GOOGLE_CLOUD_LOCATION
, or GOOGLE_API_KEY
for
Vertex AI express mode. It's recommended that you set only project & location,
or API key. But if both are set, project & location takes precedence.
export GOOGLE_GENAI_USE_VERTEXAI=true
// Set project and location for Vertex AI authentication
export GOOGLE_CLOUD_PROJECT='your-project-id'
export GOOGLE_CLOUD_LOCATION='us-central1'
// or API key for express mode
export GOOGLE_API_KEY='your-api-key'
After configuring the environment variables, you can instantiate a client without passing any variables.
import com.google.genai.Client;
Client client = new Client();
By default, the SDK uses the beta API endpoints provided by Google to support
preview features in the APIs. The stable API endpoints can be selected by
setting the API version to v1
.
To set the API version use HttpOptions
. For example, to set the API version to
v1
for Vertex AI:
import com.google.genai.Client;
import com.google.genai.types.HttpOptions;
Client client = Client.builder()
.project("your-project")
.location("your-location")
.vertexAI(true)
.httpOptions(HttpOptions.builder().apiVersion("v1"))
.build();
To set the API version to v1alpha
for the Gemini Developer API:
import com.google.genai.Client;
import com.google.genai.types.HttpOptions;
Client client = Client.builder()
.apiKey("your-api-key")
.httpOptions(HttpOptions.builder().apiVersion("v1alpha"))
.build();
Besides apiVersion
, HttpOptions
also allows for flexible customization of HTTP request parameters such as
baseUrl
, headers
, and timeout
:
HttpOptions httpOptions = HttpOptions.builder()
.baseUrl("your-own-endpoint.com")
.headers(ImmutableMap.of("key", "value"))
.timeout(600)
.build();
Beyond client-level configuration, HttpOptions
can also be set on a
per-request basis, providing maximum flexibility for diverse API call settings.
See this example
for more details.
ClientOptions
enables you to customize the behavior of the HTTP client. It currently supports
configuring the connection pool via maxConnections
(total maximum connections)
and maxConnectionsPerHost
(maximum connections to a single host).
import com.google.genai.Client;
import com.google.genai.types.ClientOptions;
Client client = Client.builder()
.apiKey("your-api-key")
.clientOptions(ClientOptions.builder().maxConnections(64).maxConnectionsPerHost(16))
.build();
The Gen AI Java SDK allows you to access the service programmatically. The following code snippets are some basic usages of model inferencing.
Use generateContent
method for the most basic text generation.
package <your package name>;
import com.google.genai.Client;
import com.google.genai.types.GenerateContentResponse;
public class GenerateContentWithTextInput {
public static void main(String[] args) {
// Instantiate the client. The client by default uses the Gemini API. It
// gets the API key from the environment variable `GOOGLE_API_KEY`.
Client client = new Client();
GenerateContentResponse response =
client.models.generateContent("gemini-2.0-flash-001", "What is your name?", null);
// Gets the text string from the response by the quick accessor method `text()`.
System.out.println("Unary response: " + response.text());
}
}
package <your package name>;
import com.google.common.collect.ImmutableList;
import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Part;
public class GenerateContentWithImageInput {
public static void main(String[] args) {
// Instantiate the client using Vertex API. The client gets the project and
// location from the environment variables `GOOGLE_CLOUD_PROJECT` and
// `GOOGLE_CLOUD_LOCATION`.
Client client = Client.builder().vertexAI(true).build();
// Construct a multimodal content with quick constructors
Content content =
Content.fromParts(
Part.fromText("describe the image"),
Part.fromUri("gs://path/to/image.jpg", "image/jpeg"));
GenerateContentResponse response =
client.models.generateContent("gemini-2.0-flash-001", content, null);
System.out.println("Response: " + response.text());
}
}
The Models.generateContent methods supports automatic function calling (AFC). If the user passes in a list of public static method in the tool list of the GenerateContentConfig, by default AFC will be enabled with maximum remote calls to be 10 times. Follow the following steps to experience this feature.
Step 1: enable the compiler to parse parameter name of your methods. In your
pom.xml
, include the following compiler configuration.
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.14.0</version>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
</configuration>
</plugin>
Step 2: see the following code example to use AFC, pay special attention to
the code line where the java.lang.reflect.Method
instance was extracted.
import com.google.common.collect.ImmutableList;
import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Tool;
import java.lang.reflect.Method;
public class GenerateContentWithFunctionCall {
public static String getCurrentWeather(String location, String unit) {
return "The weather in " + location + " is " + "very nice.";
}
public static void main(String[] args) throws NoSuchMethodException {
Client client = new Client();
Method method =
GenerateContentWithFunctionCall.class.getMethod(
"getCurrentWeather", String.class, String.class);
GenerateContentConfig config =
GenerateContentConfig.builder()
.tools(
ImmutableList.of(
Tool.builder().functions(ImmutableList.of(method)).build()))
.build();
GenerateContentResponse response =
client.models.generateContent(
"gemini-2.0-flash-001",
"What is the weather in Vancouver?",
config);
System.out.println("The response is: " + response.text());
System.out.println(
"The automatic function calling history is: "
+ response.automaticFunctionCallingHistory().get());
}
}
To get a streamed response, you can use the generateContentStream
method:
package <your package name>;
import com.google.genai.Client;
import com.google.genai.ResponseStream;
import com.google.genai.types.GenerateContentResponse;
public class StreamGeneration {
public static void main(String[] args) {
// Instantiate the client using Vertex API. The client gets the project and location from the
// environment variables `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION`.
Client client = Client.builder().vertexAI(true).build();
ResponseStream<GenerateContentResponse> responseStream =
client.models.generateContentStream(
"gemini-2.0-flash-001", "Tell me a story in 300 words.", null);
System.out.println("Streaming response: ");
for (GenerateContentResponse res : responseStream) {
System.out.print(res.text());
}
// To save resources and avoid connection leaks, it is recommended to close the response
// stream after consumption (or using try block to get the response stream).
responseStream.close();
}
}
To get a response asynchronously, you can use the generateContent
method from
the client.async.models
namespace.
package <your package name>;
import com.google.genai.Client;
import com.google.genai.types.GenerateContentResponse;
import java.util.concurrent.CompletableFuture;
public class GenerateContentAsync {
public static void main(String[] args) {
// Instantiates the client using Gemini API, and sets the API key in the builder.
Client client = Client.builder().apiKey("your-api-key").build();
CompletableFuture<GenerateContentResponse> responseFuture =
client.async.models.generateContent(
"gemini-2.0-flash-001", "Introduce Google AI Studio.", null);
responseFuture
.thenAccept(
response -> {
System.out.println("Async response: " + response.text());
})
.join();
}
}
To set configurations like System Instructions and Safety Settings, you can pass
a GenerateContentConfig
to the GenerateContent
method.
package <your package name>;
import com.google.common.collect.ImmutableList;
import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.GoogleSearch;
import com.google.genai.types.HarmBlockThreshold;
import com.google.genai.types.HarmCategory;
import com.google.genai.types.Part;
import com.google.genai.types.SafetySetting;
import com.google.genai.types.Tool;
public class GenerateContentWithConfigs {
public static void main(String[] args) {
Client client = new Client();
// Sets the safety settings in the config.
ImmutableList<SafetySetting> safetySettings =
ImmutableList.of(
SafetySetting.builder()
.category(HarmCategory.Known.HARM_CATEGORY_HATE_SPEECH)
.threshold(HarmBlockThreshold.Known.BLOCK_ONLY_HIGH)
.build(),
SafetySetting.builder()
.category(HarmCategory.Known.HARM_CATEGORY_DANGEROUS_CONTENT)
.threshold(HarmBlockThreshold.Known.BLOCK_LOW_AND_ABOVE)
.build());
// Sets the system instruction in the config.
Content systemInstruction = Content.fromParts(Part.fromText("You are a history teacher."));
// Sets the Google Search tool in the config.
Tool googleSearchTool = Tool.builder().googleSearch(GoogleSearch.builder().build()).build();
GenerateContentConfig config =
GenerateContentConfig.builder()
.candidateCount(1)
.maxOutputTokens(1024)
.safetySettings(safetySettings)
.systemInstruction(systemInstruction)
.tools(ImmutableList.of(googleSearchTool))
.build();
GenerateContentResponse response =
client.models.generateContent("gemini-2.0-flash-001", "Tell me the history of LLM", config);
System.out.println("Response: " + response.text());
}
}
To get a response in JSON by passing in a response schema to the
GenerateContent
API.
package <your package name>;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableMap;
import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.Schema;
import com.google.genai.types.Type;
public class GenerateContentWithSchema {
public static void main(String[] args) {
Client client = new Client();
ImmutableMap<String, Object> schema = ImmutableMap.of(
"type", "object",
"properties", ImmutableMap.of(
"recipe_name", ImmutableMap.of("type", "string"),
"ingredients", ImmutableMap.of(
"type", "array",
"items", ImmutableMap.of("type", "string")
)
),
"required", ImmutableList.of("recipe_name", "ingredients")
);
GenerateContentConfig config =
GenerateContentConfig.builder()
.responseMimeType("application/json")
.candidateCount(1)
.responseSchema(schema)
.build();
GenerateContentResponse response =
client.models.generateContent("gemini-2.0-flash-001", "Tell me your name", config);
System.out.println("Response: " + response.text());
}
}
This library follows Semantic Versioning.
The Google Gen AI Java SDK will accept contributions in the future.
Apache 2.0 - See LICENSE for more information.