这是indexloc提供的服务,不要输入任何密码
Skip to content
This repository was archived by the owner on Aug 3, 2021. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 9 additions & 2 deletions infer.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,12 @@
args = parser.parse_args()
print(args)

use_gpu = torch.cuda.is_available() # global flag
if use_gpu:
print('GPU is available.')
else:
print('GPU is not available.')

def main():
params = dict()
params['batch_size'] = 1
Expand Down Expand Up @@ -71,14 +77,15 @@ def main():
print('######################################################')
print('######################################################')
rencoder.eval()
rencoder = rencoder.cuda()
if use_gpu: rencoder = rencoder.cuda()

inv_userIdMap = {v: k for k, v in data_layer.userIdMap.items()}
inv_itemIdMap = {v: k for k, v in data_layer.itemIdMap.items()}

eval_data_layer.src_data = data_layer.data
with open(args.predictions_path, 'w') as outf:
for i, ((out, src), majorInd) in enumerate(eval_data_layer.iterate_one_epoch_eval(for_inf=True)):
inputs = Variable(src.cuda().to_dense())
inputs = Variable(src.cuda().to_dense() if use_gpu else src.to_dense())
targets_np = out.to_dense().numpy()[0, :]
outputs = rencoder(inputs).cpu().data.numpy()[0, :]
non_zeros = targets_np.nonzero()[0].tolist()
Expand Down
17 changes: 12 additions & 5 deletions run.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,13 +53,19 @@
args = parser.parse_args()
print(args)

use_gpu = torch.cuda.is_available() # global flag
if use_gpu:
print('GPU is available.')
else:
print('GPU is not available.')

def do_eval(encoder, evaluation_data_layer):
encoder.eval()
denom = 0.0
total_epoch_loss = 0.0
for i, (eval, src) in enumerate(evaluation_data_layer.iterate_one_epoch_eval()):
inputs = Variable(src.cuda().to_dense())
targets = Variable(eval.cuda().to_dense())
inputs = Variable(src.cuda().to_dense() if use_gpu else src.to_dense())
targets = Variable(eval.cuda().to_dense() if use_gpu else eval.to_dense())
outputs = encoder(inputs)
loss, num_ratings = model.MSEloss(outputs, targets)
total_epoch_loss += loss.data[0]
Expand Down Expand Up @@ -139,7 +145,8 @@ def main():
if len(gpu_ids)>1:
rencoder = nn.DataParallel(rencoder,
device_ids=gpu_ids)
rencoder = rencoder.cuda()

if use_gpu: rencoder = rencoder.cuda()

if args.optimizer == "adam":
optimizer = optim.Adam(rencoder.parameters(),
Expand Down Expand Up @@ -177,7 +184,7 @@ def main():
if args.optimizer == "momentum":
scheduler.step()
for i, mb in enumerate(data_layer.iterate_one_epoch()):
inputs = Variable(mb.cuda().to_dense())
inputs = Variable(mb.cuda().to_dense() if use_gpu else mb.to_dense())
optimizer.zero_grad()
outputs = rencoder(inputs)
loss, num_ratings = model.MSEloss(outputs, inputs)
Expand Down Expand Up @@ -232,4 +239,4 @@ def main():
torch.save(rencoder.state_dict(), model_checkpoint + ".last")

if __name__ == '__main__':
main()
main()