这是indexloc提供的服务,不要输入任何密码
Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
export default function NativeEmbeddingOptions() {
return (
<div className="w-full h-20 items-center justify-center flex">
<p className="text-sm font-base text-white text-opacity-60">
There is no set up required when using AnythingLLM's native embedding
engine.
</p>
</div>
);
}
Binary file added frontend/src/media/logo/anything-llm-icon.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
11 changes: 11 additions & 0 deletions frontend/src/pages/GeneralSettings/EmbeddingPreference/index.jsx
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ import Sidebar, {
import { isMobile } from "react-device-detect";
import System from "../../../models/system";
import showToast from "../../../utils/toast";
import AnythingLLMIcon from "../../../media/logo/anything-llm-icon.png";
import OpenAiLogo from "../../../media/llmprovider/openai.png";
import AzureOpenAiLogo from "../../../media/llmprovider/azure.png";
import LocalAiLogo from "../../../media/llmprovider/localai.png";
Expand All @@ -14,6 +15,7 @@ import ChangeWarningModal from "../../../components/ChangeWarning";
import OpenAiOptions from "../../../components/EmbeddingSelection/OpenAiOptions";
import AzureAiOptions from "../../../components/EmbeddingSelection/AzureAiOptions";
import LocalAiOptions from "../../../components/EmbeddingSelection/LocalAiOptions";
import NativeEmbeddingOptions from "../../../components/EmbeddingSelection/NativeEmbeddingOptions";

export default function GeneralEmbeddingPreference() {
const [saving, setSaving] = useState(false);
Expand Down Expand Up @@ -138,6 +140,14 @@ export default function GeneralEmbeddingPreference() {
name="EmbeddingEngine"
value={embeddingChoice}
/>
<LLMProviderOption
name="AnythingLLM Embedder"
value="native"
description="Use the built-in embedding engine for AnythingLLM. Zero setup!"
checked={embeddingChoice === "native"}
image={AnythingLLMIcon}
onClick={updateChoice}
/>
<LLMProviderOption
name="OpenAI"
value="openai"
Expand Down Expand Up @@ -167,6 +177,7 @@ export default function GeneralEmbeddingPreference() {
/>
</div>
<div className="mt-10 flex flex-wrap gap-4 max-w-[800px]">
{embeddingChoice === "native" && <NativeEmbeddingOptions />}
{embeddingChoice === "openai" && (
<OpenAiOptions settings={settings} />
)}
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import React, { memo, useEffect, useState } from "react";
import System from "../../../../../models/system";
import AnythingLLMIcon from "../../../../../media/logo/anything-llm-icon.png";
import OpenAiLogo from "../../../../../media/llmprovider/openai.png";
import AzureOpenAiLogo from "../../../../../media/llmprovider/azure.png";
import AnthropicLogo from "../../../../../media/llmprovider/anthropic.png";
Expand Down Expand Up @@ -57,67 +58,70 @@ const VECTOR_DB_PRIVACY = {
chroma: {
name: "Chroma",
description: [
"Your embedded text not visible outside of your Chroma instance",
"Your vectors and document text are stored on your Chroma instance",
"Access to your instance is managed by you",
],
logo: ChromaLogo,
},
pinecone: {
name: "Pinecone",
description: [
"Your embedded text and vectors are visible to Pinecone, but is not accessed",
"They manage your data and access to their servers",
"Your vectors and document text are stored on Pinecone's servers",
"Access to your data is managed by Pinecone",
],
logo: PineconeLogo,
},
qdrant: {
name: "Qdrant",
description: [
"Your embedded text is visible to Qdrant if using a hosted instance",
"Your embedded text is not visible to Qdrant if using a self-hosted instance",
"Your data is stored on your Qdrant instance",
"Your vectors and document text are stored on your Qdrant instance (cloud or self-hosted)",
],
logo: QDrantLogo,
},
weaviate: {
name: "Weaviate",
description: [
"Your embedded text is visible to Weaviate, if using a hosted instance",
"Your embedded text is not visible to Weaviate, if using a self-hosted instance",
"Your data is stored on your Weaviate instance",
"Your vectors and document text are stored on your Weaviate instance (cloud or self-hosted)",
],
logo: WeaviateLogo,
},
lancedb: {
name: "LanceDB",
description: [
"Your embedded text and vectors are only accessible by this AnythingLLM instance",
"Your vectors and document text are stored privately on this instance of AnythingLLM",
],
logo: LanceDbLogo,
},
};

const EMBEDDING_ENGINE_PRIVACY = {
native: {
name: "AnythingLLM Embedder",
description: [
"Your document text is embedded privately on this instance of AnythingLLM",
],
logo: AnythingLLMIcon,
},
openai: {
name: "OpenAI",
description: [
"Your documents are visible to OpenAI",
"Your document text is sent to OpenAI servers",
"Your documents are not used for training",
],
logo: OpenAiLogo,
},
azure: {
name: "Azure OpenAI",
description: [
"Your documents are not visible to OpenAI or Microsoft",
"Your documents not used for training",
"Your document text is sent to your Microsoft Azure service",
"Your documents are not used for training",
],
logo: AzureOpenAiLogo,
},
localai: {
name: "LocalAI",
description: [
"Your documents are only accessible on the server running LocalAI",
"Your document text is embedded privately on the server running LocalAI",
],
logo: LocalAiLogo,
},
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import React, { memo, useEffect, useState } from "react";
import AnythingLLMIcon from "../../../../../media/logo/anything-llm-icon.png";
import OpenAiLogo from "../../../../../media/llmprovider/openai.png";
import AzureOpenAiLogo from "../../../../../media/llmprovider/azure.png";
import LocalAiLogo from "../../../../../media/llmprovider/localai.png";
Expand All @@ -8,9 +9,10 @@ import LLMProviderOption from "../../../../../components/LLMSelection/LLMProvide
import OpenAiOptions from "../../../../../components/EmbeddingSelection/OpenAiOptions";
import AzureAiOptions from "../../../../../components/EmbeddingSelection/AzureAiOptions";
import LocalAiOptions from "../../../../../components/EmbeddingSelection/LocalAiOptions";
import NativeEmbeddingOptions from "../../../../../components/EmbeddingSelection/NativeEmbeddingOptions";

function EmbeddingSelection({ nextStep, prevStep, currentStep }) {
const [embeddingChoice, setEmbeddingChoice] = useState("openai");
const [embeddingChoice, setEmbeddingChoice] = useState("native");
const [settings, setSettings] = useState(null);
const [loading, setLoading] = useState(true);
const updateChoice = (selection) => {
Expand All @@ -21,7 +23,7 @@ function EmbeddingSelection({ nextStep, prevStep, currentStep }) {
async function fetchKeys() {
const _settings = await System.keys();
setSettings(_settings);
setEmbeddingChoice(_settings?.EmbeddingEngine || "openai");
setEmbeddingChoice(_settings?.EmbeddingEngine || "native");
setLoading(false);
}
fetchKeys();
Expand Down Expand Up @@ -62,6 +64,14 @@ function EmbeddingSelection({ nextStep, prevStep, currentStep }) {
name="EmbeddingEngine"
value={embeddingChoice}
/>
<LLMProviderOption
name="AnythingLLM Embedder"
value="native"
description="Use the built-in embedding engine for AnythingLLM. Zero setup!"
checked={embeddingChoice === "native"}
image={AnythingLLMIcon}
onClick={updateChoice}
/>
<LLMProviderOption
name="OpenAI"
value="openai"
Expand Down Expand Up @@ -91,6 +101,7 @@ function EmbeddingSelection({ nextStep, prevStep, currentStep }) {
/>
</div>
<div className="mt-4 flex flex-wrap gap-4 max-w-[752px]">
{embeddingChoice === "native" && <NativeEmbeddingOptions />}
{embeddingChoice === "openai" && (
<OpenAiOptions settings={settings} />
)}
Expand Down
2 changes: 1 addition & 1 deletion server/models/systemSettings.js
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ const SystemSettings = {
],
currentSettings: async function () {
const llmProvider = process.env.LLM_PROVIDER || "openai";
const vectorDB = process.env.VECTOR_DB || "pinecone";
const vectorDB = process.env.VECTOR_DB || "lancedb";
return {
CanDebug: !!!process.env.NO_DEBUG,
RequiresAuth: !!process.env.AUTH_TOKEN,
Expand Down
1 change: 1 addition & 0 deletions server/package.json
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
"@pinecone-database/pinecone": "^0.1.6",
"@prisma/client": "5.3.0",
"@qdrant/js-client-rest": "^1.4.0",
"@xenova/transformers": "^2.10.0",
"archiver": "^5.3.1",
"bcrypt": "^5.1.0",
"body-parser": "^1.20.2",
Expand Down
2 changes: 2 additions & 0 deletions server/storage/models/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
Xenova
downloaded/*
13 changes: 13 additions & 0 deletions server/storage/models/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
## Native models used by AnythingLLM

This folder is specifically created as a local cache and storage folder that is used for native models that can run on a CPU.

Currently, AnythingLLM uses this folder for the following parts of the application.

### Embedding
When your embedding engine preference is `native` we will use the ONNX **all-MiniLM-L6-v2** model built by [Xenova on HuggingFace.co](https://huggingface.co/Xenova/all-MiniLM-L6-v2). This model is a quantized and WASM version of the popular [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) which produces a 384-dimension vector.

If you are using the `native` embedding engine your vector database should be configured to accept 384-dimension models if that parameter is directly editable (Pinecone only).

### Text generation (LLM selection)
_in progress_
80 changes: 80 additions & 0 deletions server/utils/EmbeddingEngines/native/index.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
const path = require("path");
const fs = require("fs");
const { toChunks } = require("../../helpers");

class NativeEmbedder {
constructor() {
this.model = "Xenova/all-MiniLM-L6-v2";
this.cacheDir = path.resolve(
process.env.STORAGE_DIR
? path.resolve(process.env.STORAGE_DIR, `models`)
: path.resolve(__dirname, `../../../storage/models`)
);
this.modelPath = path.resolve(this.cacheDir, "Xenova", "all-MiniLM-L6-v2");

// Limit the number of chunks to send per loop to not overload compute.
this.embeddingChunkLimit = 16;

// Make directory when it does not exist in existing installations
if (!fs.existsSync(this.cacheDir)) fs.mkdirSync(this.cacheDir);
}

async embedderClient() {
if (!fs.existsSync(this.modelPath)) {
console.log(
"\x1b[34m[INFO]\x1b[0m The native embedding model has never been run and will be downloaded right now. Subsequent runs will be faster. (~23MB)\n\n"
);
}

try {
// Convert ESM to CommonJS via import so we can load this library.
const pipeline = (...args) =>
import("@xenova/transformers").then(({ pipeline }) =>
pipeline(...args)
);
return await pipeline("feature-extraction", this.model, {
cache_dir: this.cacheDir,
...(!fs.existsSync(this.modelPath)
? {
// Show download progress if we need to download any files
progress_callback: (data) => {
if (!data.hasOwnProperty("progress")) return;
console.log(
`\x1b[34m[Embedding - Downloading Model Files]\x1b[0m ${
data.file
} ${~~data?.progress}%`
);
},
}
: {}),
});
} catch (error) {
console.error("Failed to load the native embedding model:", error);
throw error;
}
}

async embedTextInput(textInput) {
const result = await this.embedChunks(textInput);
return result?.[0] || [];
}

async embedChunks(textChunks = []) {
const Embedder = await this.embedderClient();
const embeddingResults = [];
for (const chunk of toChunks(textChunks, this.embeddingChunkLimit)) {
const output = await Embedder(chunk, {
pooling: "mean",
normalize: true,
});
if (output.length === 0) continue;
embeddingResults.push(output.tolist());
}

return embeddingResults.length > 0 ? embeddingResults.flat() : null;
}
}

module.exports = {
NativeEmbedder,
};
3 changes: 3 additions & 0 deletions server/utils/helpers/index.js
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,9 @@ function getEmbeddingEngineSelection() {
case "localai":
const { LocalAiEmbedder } = require("../EmbeddingEngines/localAi");
return new LocalAiEmbedder();
case "native":
const { NativeEmbedder } = require("../EmbeddingEngines/native");
return new NativeEmbedder();
default:
return null;
}
Expand Down
2 changes: 1 addition & 1 deletion server/utils/helpers/updateENV.js
Original file line number Diff line number Diff line change
Expand Up @@ -203,7 +203,7 @@ function validAnthropicModel(input = "") {
}

function supportedEmbeddingModel(input = "") {
const supported = ["openai", "azure", "localai"];
const supported = ["openai", "azure", "localai", "native"];
return supported.includes(input)
? null
: `Invalid Embedding model type. Must be one of ${supported.join(", ")}.`;
Expand Down
5 changes: 1 addition & 4 deletions server/utils/prisma/index.js
Original file line number Diff line number Diff line change
Expand Up @@ -5,10 +5,7 @@ const { PrismaClient } = require("@prisma/client");
// npx prisma migrate dev --name init -> ensures that db is in sync with schema
// npx prisma migrate reset -> resets the db

const isProd = process.env.NODE_ENV === "production";
const logLevels = isProd
? ["error", "info", "warn"]
: ["query", "info", "warn", "error"];
const logLevels = ["error", "info", "warn"]; // add "query" to debug query logs
const prisma = new PrismaClient({
log: logLevels,
});
Expand Down
Loading