Computer Science > Machine Learning
[Submitted on 5 Dec 2024]
Title:Residual Hyperbolic Graph Convolution Networks
View PDF HTML (experimental)Abstract:Hyperbolic graph convolutional networks (HGCNs) have demonstrated representational capabilities of modeling hierarchical-structured graphs. However, as in general GCNs, over-smoothing may occur as the number of model layers increases, limiting the representation capabilities of most current HGCN models. In this paper, we propose residual hyperbolic graph convolutional networks (R-HGCNs) to address the over-smoothing problem. We introduce a hyperbolic residual connection function to overcome the over-smoothing problem, and also theoretically prove the effectiveness of the hyperbolic residual function. Moreover, we use product manifolds and HyperDrop to facilitate the R-HGCNs. The distinctive features of the R-HGCNs are as follows: (1) The hyperbolic residual connection preserves the initial node information in each layer and adds a hyperbolic identity mapping to prevent node features from being indistinguishable. (2) Product manifolds in R-HGCNs have been set up with different origin points in different components to facilitate the extraction of feature information from a wider range of perspectives, which enhances the representing capability of R-HGCNs. (3) HyperDrop adds multiplicative Gaussian noise into hyperbolic representations, such that perturbations can be added to alleviate the over-fitting problem without deconstructing the hyperbolic geometry. Experiment results demonstrate the effectiveness of R-HGCNs under various graph convolution layers and different structures of product manifolds.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.