Computer Science > Software Engineering
[Submitted on 2 Dec 2024]
Title:PassionNet: An Innovative Framework for Duplicate and Conflicting Requirements Identification
View PDF HTML (experimental)Abstract:Early detection and resolution of duplicate and conflicting requirements can significantly enhance project efficiency and overall software quality. Researchers have developed various computational predictors by leveraging Artificial Intelligence (AI) potential to detect duplicate and conflicting requirements. However, these predictors lack in performance and requires more effective approaches to empower software development processes. Following the need of a unique predictor that can accurately identify duplicate and conflicting requirements, this research offers a comprehensive framework that facilitate development of 3 different types of predictive pipelines: language models based, multi-model similarity knowledge-driven and large language models (LLMs) context + multi-model similarity knowledge-driven. Within first type predictive pipelines landscape, framework facilitates conflicting/duplicate requirements identification by leveraging 8 distinct types of LLMs. In second type, framework supports development of predictive pipelines that leverage multi-scale and multi-model similarity knowledge, ranging from traditional similarity computation methods to advanced similarity vectors generated by LLMs. In the third type, the framework synthesizes predictive pipelines by integrating contextual insights from LLMs with multi-model similarity knowledge. Across 6 public benchmark datasets, extensive testing of 760 distinct predictive pipelines demonstrates that hybrid predictive pipelines consistently outperforms other two types predictive pipelines in accurately identifying duplicate and conflicting requirements. This predictive pipeline outperformed existing state-of-the-art predictors performance with an overall performance margin of 13% in terms of F1-score
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.