Computer Science > Machine Learning
[Submitted on 6 Feb 2024 (v1), last revised 13 Oct 2025 (this version, v3)]
Title:Discovering and Reasoning of Causality in the Hidden World with Large Language Models
View PDF HTML (experimental)Abstract:Revealing hidden causal variables alongside the underlying causal mechanisms is essential to the development of science. Despite the progress in the past decades, existing practice in causal discovery (CD) heavily relies on high-quality measured variables, which are usually given by human experts. In fact, the lack of well-defined high-level variables behind unstructured data has been a longstanding roadblock to a broader real-world application of CD. This procedure can naturally benefit from an automated process that can suggest potential hidden variables in the system. Interestingly, Large language models (LLMs) are trained on massive observations of the world and have demonstrated great capability in processing unstructured data. To leverage the power of LLMs, we develop a new framework termed Causal representatiOn AssistanT (COAT) that incorporates the rich world knowledge of LLMs to propose useful measured variables for CD with respect to high-value target variables on their paired unstructured data. Instead of directly inferring causality with LLMs, COAT constructs feedback from intermediate CD results to LLMs to refine the proposed variables. Given the target variable and the paired unstructured data, we first develop COAT-MB that leverages the predictivity of the proposed variables to iteratively uncover the Markov Blanket of the target variable. Built upon COAT-MB, COAT-PAG further extends to uncover a more complete causal graph, i.e., Partial Ancestral Graph, by iterating over the target variables and actively seeking new high-level variables. Moreover, the reliable CD capabilities of COAT also extend the debiased causal inference to unstructured data by discovering an adjustment set. We establish theoretical guarantees for the CD results and verify their efficiency and reliability across realistic benchmarks and real-world case studies.
Submission history
From: Chenxi Liu [view email][v1] Tue, 6 Feb 2024 12:18:54 UTC (4,077 KB)
[v2] Thu, 31 Oct 2024 12:27:30 UTC (3,518 KB)
[v3] Mon, 13 Oct 2025 06:34:20 UTC (2,936 KB)
Current browse context:
cs.LG
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.