Quantitative Biology > Neurons and Cognition
[Submitted on 7 Jun 2024 (v1), last revised 26 Mar 2025 (this version, v2)]
Title:Development and Validation of a Deep-Learning Model for Differential Treatment Benefit Prediction for Adults with Major Depressive Disorder Deployed in the Artificial Intelligence in Depression Medication Enhancement (AIDME) Study
View PDFAbstract:INTRODUCTION: The pharmacological treatment of Major Depressive Disorder (MDD) relies on a trial-and-error approach. We introduce an artificial intelligence (AI) model aiming to personalize treatment and improve outcomes, which was deployed in the Artificial Intelligence in Depression Medication Enhancement (AIDME) Study. OBJECTIVES: 1) Develop a model capable of predicting probabilities of remission across multiple pharmacological treatments for adults with at least moderate major depression. 2) Validate model predictions and examine them for amplification of harmful biases. METHODS: Data from previous clinical trials of antidepressant medications were standardized into a common framework and included 9,042 adults with moderate to severe major depression. Feature selection retained 25 clinical and demographic variables. Using Bayesian optimization, a deep learning model was trained on the training set, refined using the validation set, and tested once on the held-out test set. RESULTS: In the evaluation on the held-out test set, the model demonstrated achieved an AUC of 0.65. The model outperformed a null model on the test set (p = 0.01). The model demonstrated clinical utility, achieving an absolute improvement in population remission rate in hypothetical and actual improvement testing. While the model did identify one drug (escitalopram) as generally outperforming the other drugs (consistent with the input data), there was otherwise significant variation in drug rankings. On bias testing, the model did not amplify potentially harmful biases. CONCLUSIONS: We demonstrate the first model capable of predicting outcomes for 10 different treatment options for patients with MDD, intended to be used at or near the start of treatment to personalize treatment. The model was put into clinical practice during the AIDME randomized controlled trial whose results are reported separately.
Submission history
From: David Benrimoh [view email][v1] Fri, 7 Jun 2024 15:04:59 UTC (2,004 KB)
[v2] Wed, 26 Mar 2025 12:29:31 UTC (1,518 KB)
Current browse context:
q-bio.NC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.