这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Wald Entropy in Extended Modified Myrzakulov Gravity Theories: \(f(R, T, Q, R_{\mu \nu }T^{\mu \nu }, R_{\mu \nu }Q^{\mu \nu }, \dots )\)

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate black hole entropy in a broad class of modified gravity theories defined by generalized Lagrangians of the form \(\mathcal {L} = \alpha R + F(T, Q, R_{\mu \nu }T^{\mu \nu }, R_{\mu \nu }Q^{\mu \nu }, \dots )\), where \(R\), \(T\), and \(Q\) represent curvature, torsion, and non-metricity scalars. Using the vielbein formalism, we derive the Wald entropy for various subclasses of these models, extending the classical entropy formula to accommodate non-Riemannian geometry. Our focus is on how the additional geometric degrees of freedom modify the entropy expression. The analysis shows that such corrections arise systematically from the extended structure of the action and preserve diffeomorphism invariance. These results refine the theoretical framework for gravitational thermodynamics in extended geometry settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Riess, A.G., Filippenko, A.V., Challis, P., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S., Aldering, G., Goldhaber, G., et al.: Measurements of \(\Omega\) and \(\Lambda\) from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)

  3. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753–1936 (2006). arXiv:hep-th/0603057

    Article  ADS  MathSciNet  Google Scholar 

  4. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99–102 (1980)

    Article  ADS  Google Scholar 

  5. Planck Collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020)

  6. Eisenstein, D.J., Zehavi, I., Seo, H.J., et al.: Detection of the baryon acoustic peak in the large-scale correlation function of the SDSS Luminous Red Galaxies. Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  7. Sotiriou, T.P., Faraoni, V.: f(R) theories of gravity. Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  Google Scholar 

  8. Cai, Y.F., Capozziello, S., De Laurentis, M., Saridakis, E.N.: f(T) gravity. Rept. Prog. Phys. 79, 106901 (2016)

    Article  ADS  Google Scholar 

  9. Jimenez, J.B., Heisenberg, L., Koivisto, T.S.: f(Q) gravity: A unifying perspective. Phys. Rev. D 98, 044048 (2018)

    ADS  MathSciNet  Google Scholar 

  10. Beltrán Jiménez, J., De Felice, A., Heisenberg, L.: Hybrid metric-Palatini f(R) gravity, Phys. Rev. D 102, 024030 (2020)

  11. Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: f(R, T) gravity. Phys. Rev. D 85, 084036 (2012)

    ADS  Google Scholar 

  12. Capozziello, S., Lambiase, G., Stornaiolo, C.: Cosmological solutions in the frame of Noether symmetries. Int. J. Mod. Phys. D 5, 263 (1996)

    Google Scholar 

  13. Paliathanasis, A., Capozziello, S., Tsamparlis, M.: Noether symmetries and exact solutions in modified gravity models. JCAP 1410, 023 (2014)

    Google Scholar 

  14. Santos, A.F.: Energy conditions in extended theories of gravity. Phys. Rev. D 75, 023502 (2007)

    ADS  Google Scholar 

  15. Banados, M., Gomberoff, A., Martínez, C.: Anti-de Sitter space-time and Noether symmetries. Phys. Rev. D 80, 105021 (2009)

    Google Scholar 

  16. Momeni, D., Myrzakulov, R.: Metric-Affine Myrzakulov Gravity Theories: Models, Applications and Theoretical Developments, Int. J. Theor. Phys. 64(4), 95 (2025). https://doi.org/10.1007/s10773-025-05966-y. [arXiv:2504.02002 [gr-qc]]

  17. Momeni, D., Myrzakulov, R.: Myrzakulov gravity in vielbein formalism: A study in Weitzenböck spacetime, Nucl. Phys. B 1015, 116903 (2025). https://doi.org/10.1016/j.nuclphysb.2025.116903. [arXiv:2412.04524 [gr-qc]]

  18. Momeni, D., Myrzakulov, R.: Einstein–Gauss–Bonnet–Myrzakulov gravity from \(R + F(T,G)\): Numerical insights and torsion–Gauss–Bonnet dynamics in Weitzenböck spacetime, Nucl. Phys. B 1017, 116966 (2025). https://doi.org/10.1016/j.nuclphysb.2025.116966. [arXiv:2505.18285 [gr-qc]]

  19. Momeni, D., Myrzakulov, R.: Inflation in Myrzakulov \(F(R,T)\) gravity: A comparative study in metric, symmetric teleparallel, and Weitzenböck formalisms, Nucl. Phys. B 1018, 117022 (2025). https://doi.org/10.1016/j.nuclphysb.2025.117022. [arXiv:2507.11753 [gr-qc]]

  20. Kofinas, G., Saridakis, E.N.: Teleparallel equivalent of Gauss-Bonnet gravity and its modifications. Phys. Rev. D 90, 084044 (2014)

    Article  ADS  Google Scholar 

  21. Nojiri, S., Odintsov, S.D.: Modified Gauss-Bonnet gravity as a candidate for the dark energy. Phys. Lett. B 631, 1–6 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  22. Capozziello, S., De Laurentis, M.: The \(f(R)\) gravity and cosmology. Gen. Rel. Grav. 40, 357–371 (2008)

  23. Fonseca, E., et al.: A new neutron star mass measurement from X-ray timing observations. Nature 593, 211–214 (2021)

    Google Scholar 

  24. Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  Google Scholar 

  25. Heisenberg, L.: A systematic approach to generalisations of general relativity and their cosmological implications. Phys. Rep. 796, 1–113 (2019). https://doi.org/10.1016/j.physrep.2018.11.006

  26. Heisenberg, L.: Recent advances in \(f(Q)\) gravity and its cosmological applications. Phys. Rep. 1066, 1–78 (2019). https://doi.org/10.1016/j.physrep.2024.02.001

  27. Heisenberg, L., et al.: The geometrical trinity of gravity: Curvature, torsion, and non-metricity. https://doi.org/10.3390/universe5070173

  28. Cartan, E.: Sur les variétés á connexion affine, Ann. Sci. École Norm. Sup. 39 (1922)

  29. Hehl, F.W., von der Heyde, P., Kerlick, D., Nester, J.: General Relativity with Spin and Torsion: Foundations and Prospects. Rev. Mod. Phys. 48, 393–416 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  30. Blagojević, M.: Gravitation and Gauge Symmetries, Institute of Physics Publishing, (2002)

  31. Myrzakulov, R.: Eur. Phys. J. C 72, 2203 (2012). https://doi.org/10.1140/epjc/s10052-012-2203-y. [arXiv:1207.1039 [gr-qc]]

    Article  ADS  Google Scholar 

  32. Wald, R.M.: Black hole entropy in diffeomorphism invariant theories of gravity. Phys. Rev. D 48, 3427–3431 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  33. Jacobson, T.: Thermodynamics of spacetime: The Einstein equation of state. Phys. Rev. Lett. 75, 1260 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  34. Padmanabhan, T.: Classical and quantum thermodynamics of horizons in spherically symmetric spacetimes. Class. Quant. Grav. 19, 5387 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  35. Akbar, M., Cai, R.-G.: Thermodynamic behavior of field equations in \(f(R)\) gravity. Phys. Lett. B 648, 243–248 (2007)

  36. Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: \(f(R, T)\) gravity. Phys. Rev. D 84, 024020 (2011)

  37. Bahamonde, S., Böhmer, C.G., Wright, M.: Modified teleparallel theories of gravity. Phys. Rev. D 92, 104042 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. Elías, M., Nester, J.M., Yo, L.: Nonequilibrium thermodynamics in general spacetime geometries. Universe 7, 438 (2021)

    Google Scholar 

  39. Solodukhin, S.N.: Entanglement entropy of black holes. Living Rev. Relativ. 14, 8 (2011)

    Article  ADS  Google Scholar 

  40. Casadio, R., Cavalcanti, R.T.: Torsion and quantum effects in black hole thermodynamics. Phys. Lett. A 272, 219 (2000)

    MathSciNet  Google Scholar 

  41. Calmet, X., Latosh, B.: Torsion and black hole entropy. Phys. Lett. B 826, 136887 (2022)

    Google Scholar 

  42. Dong, X.: Holographic entanglement entropy for general higher derivative gravity. JHEP 2014, 192 (2014)

    Article  Google Scholar 

  43. Rovelli, C.: Black hole entropy from loop quantum gravity. Phys. Rev. Lett. 77, 3288 (1996)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Higher Education of the Republic of Kazakhstan, Grant No. AP26101889.

Author information

Authors and Affiliations

Authors

Contributions

D.M. developed the theoretical framework, performed the entropy derivations for each modified gravity model, and wrote the main manuscript text. R.M. contributed to the conceptual design of the generalized Myrzakulov gravity theory and supervised the thermodynamic and statistical analyses. D.M. also prepared all figures and tables, including the Wald entropy summary table. Both authors reviewed, edited, and approved the final version of the manuscript.

Corresponding author

Correspondence to Davood Momeni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, D., Myrzakulov, R. Wald Entropy in Extended Modified Myrzakulov Gravity Theories: \(f(R, T, Q, R_{\mu \nu }T^{\mu \nu }, R_{\mu \nu }Q^{\mu \nu }, \dots )\). Int J Theor Phys 64, 268 (2025). https://doi.org/10.1007/s10773-025-06143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s10773-025-06143-x

Keywords