Abstract
We investigate black hole entropy in a broad class of modified gravity theories defined by generalized Lagrangians of the form \(\mathcal {L} = \alpha R + F(T, Q, R_{\mu \nu }T^{\mu \nu }, R_{\mu \nu }Q^{\mu \nu }, \dots )\), where \(R\), \(T\), and \(Q\) represent curvature, torsion, and non-metricity scalars. Using the vielbein formalism, we derive the Wald entropy for various subclasses of these models, extending the classical entropy formula to accommodate non-Riemannian geometry. Our focus is on how the additional geometric degrees of freedom modify the entropy expression. The analysis shows that such corrections arise systematically from the extended structure of the action and preserve diffeomorphism invariance. These results refine the theoretical framework for gravitational thermodynamics in extended geometry settings.
Similar content being viewed by others
Data Availability
No datasets were generated or analysed during the current study.
References
Riess, A.G., Filippenko, A.V., Challis, P., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)
Perlmutter, S., Aldering, G., Goldhaber, G., et al.: Measurements of \(\Omega\) and \(\Lambda\) from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)
Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753–1936 (2006). arXiv:hep-th/0603057
Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99–102 (1980)
Planck Collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020)
Eisenstein, D.J., Zehavi, I., Seo, H.J., et al.: Detection of the baryon acoustic peak in the large-scale correlation function of the SDSS Luminous Red Galaxies. Astrophys. J. 633, 560 (2005)
Sotiriou, T.P., Faraoni, V.: f(R) theories of gravity. Rev. Mod. Phys. 82, 451 (2010)
Cai, Y.F., Capozziello, S., De Laurentis, M., Saridakis, E.N.: f(T) gravity. Rept. Prog. Phys. 79, 106901 (2016)
Jimenez, J.B., Heisenberg, L., Koivisto, T.S.: f(Q) gravity: A unifying perspective. Phys. Rev. D 98, 044048 (2018)
Beltrán Jiménez, J., De Felice, A., Heisenberg, L.: Hybrid metric-Palatini f(R) gravity, Phys. Rev. D 102, 024030 (2020)
Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: f(R, T) gravity. Phys. Rev. D 85, 084036 (2012)
Capozziello, S., Lambiase, G., Stornaiolo, C.: Cosmological solutions in the frame of Noether symmetries. Int. J. Mod. Phys. D 5, 263 (1996)
Paliathanasis, A., Capozziello, S., Tsamparlis, M.: Noether symmetries and exact solutions in modified gravity models. JCAP 1410, 023 (2014)
Santos, A.F.: Energy conditions in extended theories of gravity. Phys. Rev. D 75, 023502 (2007)
Banados, M., Gomberoff, A., Martínez, C.: Anti-de Sitter space-time and Noether symmetries. Phys. Rev. D 80, 105021 (2009)
Momeni, D., Myrzakulov, R.: Metric-Affine Myrzakulov Gravity Theories: Models, Applications and Theoretical Developments, Int. J. Theor. Phys. 64(4), 95 (2025). https://doi.org/10.1007/s10773-025-05966-y. [arXiv:2504.02002 [gr-qc]]
Momeni, D., Myrzakulov, R.: Myrzakulov gravity in vielbein formalism: A study in Weitzenböck spacetime, Nucl. Phys. B 1015, 116903 (2025). https://doi.org/10.1016/j.nuclphysb.2025.116903. [arXiv:2412.04524 [gr-qc]]
Momeni, D., Myrzakulov, R.: Einstein–Gauss–Bonnet–Myrzakulov gravity from \(R + F(T,G)\): Numerical insights and torsion–Gauss–Bonnet dynamics in Weitzenböck spacetime, Nucl. Phys. B 1017, 116966 (2025). https://doi.org/10.1016/j.nuclphysb.2025.116966. [arXiv:2505.18285 [gr-qc]]
Momeni, D., Myrzakulov, R.: Inflation in Myrzakulov \(F(R,T)\) gravity: A comparative study in metric, symmetric teleparallel, and Weitzenböck formalisms, Nucl. Phys. B 1018, 117022 (2025). https://doi.org/10.1016/j.nuclphysb.2025.117022. [arXiv:2507.11753 [gr-qc]]
Kofinas, G., Saridakis, E.N.: Teleparallel equivalent of Gauss-Bonnet gravity and its modifications. Phys. Rev. D 90, 084044 (2014)
Nojiri, S., Odintsov, S.D.: Modified Gauss-Bonnet gravity as a candidate for the dark energy. Phys. Lett. B 631, 1–6 (2005)
Capozziello, S., De Laurentis, M.: The \(f(R)\) gravity and cosmology. Gen. Rel. Grav. 40, 357–371 (2008)
Fonseca, E., et al.: A new neutron star mass measurement from X-ray timing observations. Nature 593, 211–214 (2021)
Abbott, B.P., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 119, 161101 (2017)
Heisenberg, L.: A systematic approach to generalisations of general relativity and their cosmological implications. Phys. Rep. 796, 1–113 (2019). https://doi.org/10.1016/j.physrep.2018.11.006
Heisenberg, L.: Recent advances in \(f(Q)\) gravity and its cosmological applications. Phys. Rep. 1066, 1–78 (2019). https://doi.org/10.1016/j.physrep.2024.02.001
Heisenberg, L., et al.: The geometrical trinity of gravity: Curvature, torsion, and non-metricity. https://doi.org/10.3390/universe5070173
Cartan, E.: Sur les variétés á connexion affine, Ann. Sci. École Norm. Sup. 39 (1922)
Hehl, F.W., von der Heyde, P., Kerlick, D., Nester, J.: General Relativity with Spin and Torsion: Foundations and Prospects. Rev. Mod. Phys. 48, 393–416 (1976)
Blagojević, M.: Gravitation and Gauge Symmetries, Institute of Physics Publishing, (2002)
Myrzakulov, R.: Eur. Phys. J. C 72, 2203 (2012). https://doi.org/10.1140/epjc/s10052-012-2203-y. [arXiv:1207.1039 [gr-qc]]
Wald, R.M.: Black hole entropy in diffeomorphism invariant theories of gravity. Phys. Rev. D 48, 3427–3431 (1993)
Jacobson, T.: Thermodynamics of spacetime: The Einstein equation of state. Phys. Rev. Lett. 75, 1260 (1995)
Padmanabhan, T.: Classical and quantum thermodynamics of horizons in spherically symmetric spacetimes. Class. Quant. Grav. 19, 5387 (2002)
Akbar, M., Cai, R.-G.: Thermodynamic behavior of field equations in \(f(R)\) gravity. Phys. Lett. B 648, 243–248 (2007)
Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: \(f(R, T)\) gravity. Phys. Rev. D 84, 024020 (2011)
Bahamonde, S., Böhmer, C.G., Wright, M.: Modified teleparallel theories of gravity. Phys. Rev. D 92, 104042 (2015)
Elías, M., Nester, J.M., Yo, L.: Nonequilibrium thermodynamics in general spacetime geometries. Universe 7, 438 (2021)
Solodukhin, S.N.: Entanglement entropy of black holes. Living Rev. Relativ. 14, 8 (2011)
Casadio, R., Cavalcanti, R.T.: Torsion and quantum effects in black hole thermodynamics. Phys. Lett. A 272, 219 (2000)
Calmet, X., Latosh, B.: Torsion and black hole entropy. Phys. Lett. B 826, 136887 (2022)
Dong, X.: Holographic entanglement entropy for general higher derivative gravity. JHEP 2014, 192 (2014)
Rovelli, C.: Black hole entropy from loop quantum gravity. Phys. Rev. Lett. 77, 3288 (1996)
Acknowledgements
This work was supported by the Ministry of Science and Higher Education of the Republic of Kazakhstan, Grant No. AP26101889.
Author information
Authors and Affiliations
Contributions
D.M. developed the theoretical framework, performed the entropy derivations for each modified gravity model, and wrote the main manuscript text. R.M. contributed to the conceptual design of the generalized Myrzakulov gravity theory and supervised the thermodynamic and statistical analyses. D.M. also prepared all figures and tables, including the Wald entropy summary table. Both authors reviewed, edited, and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Momeni, D., Myrzakulov, R. Wald Entropy in Extended Modified Myrzakulov Gravity Theories: \(f(R, T, Q, R_{\mu \nu }T^{\mu \nu }, R_{\mu \nu }Q^{\mu \nu }, \dots )\). Int J Theor Phys 64, 268 (2025). https://doi.org/10.1007/s10773-025-06143-x
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1007/s10773-025-06143-x