这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Metric-Affine Myrzakulov Gravity Theories: Models, Applications and Theoretical Developments

  • Review
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This review provides a comprehensive overview of Myrzakulov gravity, emphasizing key developments and significant results that have shaped the theory’s current understanding. The paper explores the foundational principles of this modified gravity framework, delving into the intricate structure of field equations, the incorporation of non-metricity, and the role of torsion in determining gravitational interactions. The theory’s implications extend beyond traditional gravitational physics, offering new perspectives on cosmology, astrophysical phenomena, and the behavior of matter and energy in the presence of strong gravitational fields. A particular focus is placed on the formulation of field equations within Myrzakulov gravity and their relation to standard Einstein-Hilbert theory, highlighting how the introduction of additional geometric terms and scalar fields influences the dynamics of the universe. The role of non-metricity is examined in detail, revealing how it modifies the geodesic motion and curvature of spacetime, leading to distinct observable effects compared to General Relativity. We discuss the incorporation of the modified Einstein-Hilbert action, which allows for the accommodation of dark energy and dark matter in the context of cosmological expansion and structure formation. Additionally, the paper surveys the applications of Myrzakulov gravity to a variety of astrophysical scenarios, such as black holes, gravitational waves, and the cosmic acceleration observed in the late universe. These applications illustrate the potential of the theory to offer alternative explanations for phenomena typically attributed to dark matter and dark energy. The review also highlights important constraints derived from observational data, including cosmological measurements and tests of gravitational wave propagation, that help refine the model’s predictions and determine its compatibility with the current understanding of the universe. With a selective focus on the most impactful outcomes and experimental validations, this review aims to provide a concise yet thorough examination of Myrzakulov gravity, addressing both its theoretical underpinnings and observational constraints. By presenting the theory in the broader context of modified gravity approaches, we explore its potential to reshape fundamental physics and offer novel insights into the mysteries of the cosmos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Bengochea, G.R., Ferraro, R.: Dark torsion as the cosmic speed-up. Phys. Rev. D 79, 124019 (2009). [arXiv:0812.1205]

    Article  ADS  Google Scholar 

  2. Ferraro, R., Fiorini, F.: Modified teleparallel gravity: Inflation without inflaton. Phys. Rev. D 75, 084031 (2007). [arXiv:gr-qc/0610067]

    Article  ADS  MathSciNet  Google Scholar 

  3. Myrzakulov, R.: Eur. Phys. J. C 72, 2203 (2012). https://doi.org/10.1140/epjc/s10052-012-2203-y. [arXiv:1207.1039 [gr-qc]]

    Article  ADS  Google Scholar 

  4. Bamba, K., Nojiri, S., Odintsov, S.D.: Trace-anomaly driven inflation in f(T) gravity and in minimal massive bigravity. Phys. Lett. B 731, 257 (2014). [arXiv:1401.7378]

    Article  ADS  MathSciNet  Google Scholar 

  5. Nesseris, S., Basilakos, S., Saridakis, E.N., Perivolaropoulos, L.: Viable f(T) models are practically indistinguishable from \(\Lambda \)CDM. Phys. Rev. D 88, 103010 (2013). [arXiv:1308.6142]

    Article  ADS  Google Scholar 

  6. M. Krššák and E. N. Saridakis, The covariant formulation of f(T) gravity, Class. Quant. Grav. 33, no. 11, 115009 (2016), [arXiv:1510.08432]

  7. Cai, Y.F., Capozziello, S., De Laurentis, M., Saridakis, E.N.: Rept. Prog. Phys. 79(10), 106901 (2016). https://doi.org/10.1088/0034-4885/79/10/106901[arXiv:1511.07586 [gr-qc]]

  8. Abedi, H., Capozziello, S., D’Agostino, R., Luongo, O.: Phys. Rev. D 97(8), 084008 (2018). https://doi.org/10.1103/PhysRevD.97.084008[arXiv:1803.07171 [gr-qc]]

  9. Abedi, H., Capozziello, S.: Eur. Phys. J. C 78(6), 474 (2018). https://doi.org/10.1140/epjc/s10052-018-5967-x[arXiv:1712.05933 [gr-qc]]

  10. Capozziello, S., Capriolo, M., Nojiri, S.: Phys. Lett. B 810, 135821 (2020). https://doi.org/10.1016/j.physletb.2020.135821. [arXiv:2009.12777 [gr-qc]]

    Article  MathSciNet  Google Scholar 

  11. de Martino, I., De Laurentis, M., Capozziello, S.: Universe 1(2), 123-157 (2015). https://doi.org/10.3390/universe1020123[arXiv:1507.06123 [gr-qc]]

  12. Capozziello, S., Gonzalez, P.A., Saridakis, E.N., Vasquez, Y.: JHEP 02, 039 (2013). https://doi.org/10.1007/JHEP02(2013)039. [arXiv:1210.1098 [hep-th]]

    Article  ADS  Google Scholar 

  13. Bamba, K., Odintsov, S.D., Sáez-Gómez, D.: Conformal symmetry and accelerating cosmology in teleparallel gravity. Phys. Rev. D 88, 084042 (2013). https://doi.org/10.1103/PhysRevD.88.084042. [arXiv:1308.5789 [gr-qc]]

    Article  ADS  Google Scholar 

  14. Bamba, K., Nojiri, S., Odintsov, S.D.: “Effective\(F(T)\)gravity from the higher-dimensional Kaluza-Klein and Randall-Sundrum theories,” Phys. Lett. B 725, 368-371 (2013). https://doi.org/10.1016/j.physletb.2013.07.052,[arXiv:1304.6191 [gr-qc]]

  15. Bamba, K., Myrzakulov, R., Nojiri, S., Odintsov, S.D.: Reconstruction of \(f(T)\) gravity: Rip cosmology, finite-time future singularities and thermodynamics. Phys. Rev. D 85, 104036 (2012). https://doi.org/10.1103/PhysRevD.85.104036. [arXiv:1202.4057 [gr-qc]]

    Article  ADS  Google Scholar 

  16. Maurya, D. C., Yesmakhanova, K., Myrzakulov, R., Nugmanova, G.: Myrzakulov F(T,Q) Gravity: Cosmological Implications and Constraints. Phys. Scr. 99, 105014 (2024). arXiv:2404.09698

  17. Maurya, D.C., Myrzakulov, R.: Exact Cosmology in Myrzakulov Gravity. Eur. Phys. J. C 84, 625 (2024). arXiv:2402.02123

  18. Maurya, D.C., Myrzakulov, R.: Transit Cosmological Models in Myrzakulov F(R,T) Gravity Theory. Eur. Phys. J. C 84, 534 (2024). arXiv:2401.00686

  19. Kazempour, S., Rezaei Akbarieh, A.: Cosmological Study in Myrzakulov F(R,T) Quasi-dilaton Massive Gravity. Astropart. Phys. 165, 103060 (2025). arXiv:2309.09230

  20. Papagiannopoulos, G., Basilakos, S., Saridakis, E.N.: Dynamical System Analysis of Myrzakulov Gravity. Phys. Rev. D, to appear, arXiv:2202.10871

  21. Myrzakulov, N., Myrzakulov, R., Ravera, L.: Metric-Affine Myrzakulov Gravity Theories. Symmetry 13, 1855 (2021). arXiv:2108.00957

    Google Scholar 

  22. Myrzakulov, R.: [arXiv:1205.5266 [physics.gen-ph]]

  23. N. Myrzakulov, R. Myrzakulov and L. Ravera, Symmetry 13 (2021) no.10, 1855 https://doi.org/10.3390/sym13101855[arXiv:2108.00957 [gr-qc]]

  24. Anagnostopoulos, F.K., Basilakos, S., Saridakis, E.N.: Phys. Lett. B 822, 136634 (2021). https://doi.org/10.1016/j.physletb.2021.136634. [arXiv:2104.15123 [gr-qc]]

    Article  Google Scholar 

  25. Anagnostopoulos, F.K., Gakis, V., Saridakis, E.N., Basilakos, S.: Eur. Phys. J. C 83(1), 58 (2023). https://doi.org/10.1140/epjc/s10052-023-11190-x[arXiv:2205.11445 [gr-qc]]

  26. Khyllep, W., Dutta, J., Saridakis, E.N., Yesmakhanova, K.: Phys. Rev. D 107(4), 044022 (2023). https://doi.org/10.1103/PhysRevD.107.044022[arXiv:2207.02610 [gr-qc]]

  27. Saridakis, E.N., Myrzakul, S., Myrzakulov, K., Yerzhanov, K.: Phys. Rev. D 102(2), 023525 (2020). https://doi.org/10.1103/PhysRevD.102.023525[arXiv:1912.03882 [gr-qc]]

  28. Myrzakul, T., Yesmakhanova, K., Myrzakulov, N., Myrzakul, S., Myrzakulov, K., Yerzhanov, K., Myrzakulov, R., Nugmanova, G.: [arXiv:2101.05318 [gr-qc]]

  29. Kazempour, S., Akbarieh, A.R.: Astropart. Phys. 165, 103060 (2025). https://doi.org/10.1016/j.astropartphys.2024.103060. [arXiv:2309.09230 [gr-qc]]

    Article  Google Scholar 

  30. Maurya, D.C., Myrzakulov, R.: Eur. Phys. J. C 84(5), 534 (2024). https://doi.org/10.1140/epjc/s10052-024-12904-5[arXiv:2401.00686 [gr-qc]]

  31. Maurya, D.C., Myrzakulov, R.: Eur. Phys. J. C 84(6), 625 (2024). https://doi.org/10.1140/epjc/s10052-024-12983-4[arXiv:2402.02123 [gr-qc]]

  32. Maurya, D.C., Yesmakhanova, K., Myrzakulov, R., Nugmanova, G.: Chin. Phys. C 48(12), 125101 (2024). https://doi.org/10.1088/1674-1137/ad6e62[arXiv:2403.11604 [gr-qc]]

  33. Maurya, D.C., Yesmakhanova, K., Myrzakulov, R., Nugmanova, G.: Phys. Scripta 99(10), 105014 (2024). https://doi.org/10.1088/1402-4896/ad720d[arXiv:2404.09698 [gr-qc]]

  34. Anagnostopoulos, F.K., Basilakos, S., Saridakis, E.N.: Phys. Rev. D 103(10), 104013 (2021). https://doi.org/10.1103/PhysRevD.103.104013[arXiv:2012.06524 [gr-qc]]

  35. Harko, T., Myrzakulov, N., Myrzakulov, R., Shahidi, S.: Phys. Dark Univ. 34, 100886 (2021). https://doi.org/10.1016/j.dark.2021.100886. [arXiv:2110.00358 [gr-qc]]

    Article  Google Scholar 

  36. Iosifidis, D., Myrzakulov, N., Myrzakulov, R.: Universe 7(8), 262 (2021). https://doi.org/10.3390/universe7080262[arXiv:2106.05083 [gr-qc]]

  37. Iosifidis, D., Myrzakulov, R., Ravera, L., Yergaliyeva, G., Yerzhanov, K.: Phys. Dark Univ. 37, 101094 (2022). https://doi.org/10.1016/j.dark.2022.101094. [arXiv:2111.14214 [gr-qc]]

    Article  Google Scholar 

  38. Papagiannopoulos, G., Basilakos, S., Saridakis, E.N.: Phys. Rev. D 106(10), 103512 (2022). https://doi.org/10.1103/PhysRevD.106.103512[arXiv:2202.10871 [gr-qc]]

  39. Bubuianu, L., Vacaru, S.I., Veliev, E.V., Zhamysheva, A.: Eur. Phys. J. C 84(2), 211 (2024). https://doi.org/10.1140/epjc/s10052-024-12530-1

    Article  ADS  Google Scholar 

  40. Momeni, D., Myrzakulov, R.: [arXiv:2412.04524 [gr-qc]]

  41. Morris, M.S., Thorne, K.S.: Am. J. Phys. 56, 395–412 (1988). https://doi.org/10.1119/1.15620

    Article  ADS  Google Scholar 

  42. Kerr, R.P.: Phys. Rev. Lett. 11, 237–238 (1963). https://doi.org/10.1103/PhysRevLett.11.237

    Article  ADS  MathSciNet  Google Scholar 

  43. Castillo-Felisola, O., Grez, B., Morocho-López, M., Perdiguero, J., Skirzewski, A., Vaca, J., Zambra-Gómez, N.: A polynomial affine model of gravity: after ten years,” [arXiv:2412.21122 [gr-qc]]

  44. Shukla, B.K., Sofuoğlu, D., Mishra, P.: Novel approach of Hubble parameter in f(R, T\(\phi \)) gravity. Int. J. Geom. Meth. Mod. Phys. 21(06), 2450113 (2024). https://doi.org/10.1142/S0219887824501135

    Article  MathSciNet  Google Scholar 

  45. Lacombe, O., Mukohyama, S., Seitz, J.: Are f(R, Matter) theories really relevant to cosmology? JCAP 05, 064 (2024). https://doi.org/10.1088/1475-7516/2024/05/064. [arXiv:2311.12925 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  46. Bishi, B.K., Beesham, A., Mahanta, K.L.: Cosmology in f(R, T) gravity with quadratic deceleration parameter. Z. Naturforsch. A 77(3), 259–268 (2022). https://doi.org/10.1515/zna-2021-0192

    Article  ADS  Google Scholar 

  47. Yerzhanov, K., Bauyrzhan, G., Altaibayeva, A., Myrzakulov, R.: Inflation from the Symmetry of the Generalized Cosmological Model. Symmetry 13(12), 2254 (2021). https://doi.org/10.3390/sym13122254

    Article  ADS  Google Scholar 

  48. Zia, R., Chandra Maurya, D., Pradhan, A.: Transit dark energy string cosmological models with perfect fluid in \(F(R, T)\)-gravity. Int. J. Geom. Meth. Mod. Phys. 15(10), 1850168 (2018). https://doi.org/10.1142/S0219887818501682

    Article  MathSciNet  Google Scholar 

  49. Samanta, G.C., Myrzakulov, R., Shah, P.: Kaluza–Klein Bulk Viscous Fluid Cosmological Models and the Validity of the Second Law of Thermodynamics in f(R, T) Gravity. Z. Naturforsch. A 72(4), 365-374 (2017). https://doi.org/10.1515/zna-2016-0472[arXiv:1612.01121 [gr-qc]]

  50. Shaikh, A.Y., Katore, S.D.: Hypersurface-homogeneous Universe filled with perfect fluid in f(R, T) theory of gravity. Pramana 87(6), 83 (2016). https://doi.org/10.1007/s12043-016-1299-2

    Article  ADS  Google Scholar 

  51. Capozziello, S., De Laurentis, M., Myrzakulov, R.: Noether Symmetry Approach for teleparallel-curvature cosmology. Int. J. Geom. Meth. Mod. Phys. 12(09), 1550095 (2015). https://doi.org/10.1142/S0219887815500954[arXiv:1412.1471 [gr-qc]]

  52. Amani, A.R., Dehneshin, S.L.: Interacting \(F(R,T)\) gravity with modified Chaplygin gas. Can. J. Phys. 93(12), 1453-1459 (2015). https://doi.org/10.1139/cjp-2015-0024[arXiv:1412.0560 [gr-qc]]

  53. Amani, A.R., Samiee-Nouri, A.: Logarithmic entropy corrected holographic dark energy with \(F(R,T)\) gravity. Commun. Theor. Phys. 64(4), 485-490 (2015). https://doi.org/10.1088/0253-6102/64/4/485[arXiv:1410.4172 [gr-qc]]

  54. Pasqua, A., Chattopadhyay, S., Khurshudyan, M., Aly, A.A.: Behavior of Holographic Ricci Dark Energy in Scalar Gauss-Bonnet Gravity for Different Choices of the Scale Factor. Int. J. Theor. Phys. 53(9), 2988–3013 (2014). https://doi.org/10.1007/s10773-014-2096-7

    Article  Google Scholar 

  55. Güdekli,E., Myrzakul, A., Myrzakulov, R.: Teleparallelism by inhomogeneous dark fluid. Astrophys. Space Sci. 359(2), 64 (2015). https://doi.org/10.1007/s10509-015-2515-0[arXiv:1312.1112 [gr-qc]]

  56. Roy, S., Chattopadhyay, S., Pasqua, A.: A study on the dependence of the dimensionless Brans-Dicke parameter on the scalar field and their time dependence. Eur. Phys. J. Plus 128, 147 (2013). https://doi.org/10.1140/epjp/i2013-13147-4. [arXiv:1312.0004 [gr-qc]]

    Article  Google Scholar 

  57. Pasqua, A., Chattopadhyay, S., Myrzakulov, R.: A Dark Energy Model with Higher Order Derivatives of \(H\) in the \(F(R, T)\) Modified Gravity Model. ISRN High Energy Phys. 2014, 535010 (2014). https://doi.org/10.1155/2014/535010. [arXiv:1306.0991 [physics.gen-ph]]

    Article  Google Scholar 

  58. Pasqua, A., Chattopadhyay, S., Khomenko, I.: A reconstruction of modified holographic Ricci dark energy in \(f(R, T)\) gravity. Can. J. Phys. 91(8), 632-638 (2013). https://doi.org/10.1139/cjp-2013-0016[arXiv:1305.1873 [physics.gen-ph]]

  59. Sharif, M., Rani, S., Myrzakulov, R.: Analysis of \(F(R, T)\) gravity models through energy conditions. Eur. Phys. J. Plus 128, 123 (2013). https://doi.org/10.1140/epjp/i2013-13123-0. [arXiv:1210.2714 [gr-qc]]

    Article  Google Scholar 

  60. Chattopadhyay, S.: A study on the interacting Ricci dark energy in \(F(R,T)\) gravity. Proc. Indian Natl. Sci. Acad. 84(1), 87-93 (2014). https://doi.org/10.1007/s40010-013-0090-8[arXiv:1208.3896 [physics.gen-ph]]

  61. Heisenberg, L.: Phys. Lett. B 718, 140–146 (2013). https://doi.org/10.1016/j.physletb.2012.11.024

    Article  Google Scholar 

  62. Jacobson, T.: Thermodynamics of Spacetime: The Einstein Equation of State. Physical Review Letters 75, 1260–1263 (1995). https://doi.org/10.1103/PhysRevLett.75.1260

    Article  ADS  MathSciNet  Google Scholar 

  63. Chen, S.H., Dent, J.B., Dutta, S., Saridakis, E.N.: Phys. Rev. D 83, 023508 (2011). https://doi.org/10.1103/PhysRevD.83.023508. [arXiv:1008.1250 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  64. Dent, J.B., Dutta, S., Saridakis, E.N.: JCAP 01, 009 (2011). https://doi.org/10.1088/1475-7516/2011/01/009. [arXiv:1010.2215 [astro-ph.CO]]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Davood Momeni and Ratbay Myrzakulov contributed equally to the development and completion of this manuscript.

Davood Momeni was primarily responsible for the conceptualization of the research, the formulation of the theoretical models, and the initial drafting of the manuscript. He contributed significantly to the interpretation of the results and their implications in the context of gravity theories. Additionally, he was involved in the revision and refinement of the manuscript during the peer review process.

Ratbay Myrzakulov contributed to the development of the theoretical framework and mathematical modeling. He provided key insights and guidance on the applications of the metric-affine gravity theories, and assisted in the analysis of the models. Ratbay Myrzakulov also participated in the writing and revision of the manuscript, contributing to the clarity and depth of the presentation.

Both authors approved the final version of the manuscript and agree to be accountable for the work presented.

Corresponding author

Correspondence to Davood Momeni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, D., Myrzakulov, R. Metric-Affine Myrzakulov Gravity Theories: Models, Applications and Theoretical Developments. Int J Theor Phys 64, 95 (2025). https://doi.org/10.1007/s10773-025-05966-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s10773-025-05966-y

Keywords