-
A Euclidean Monte-Carlo-informed route to ground-state preparation for quantum simulation of scalar field theory
Authors:
Navya Gupta,
Christopher David White,
Zohreh Davoudi
Abstract:
Quantum simulators hold great promise for studying real-time (Minkowski) dynamics of quantum field theories. Nonetheless, preparing non-trivial initial states remains a major obstacle. Euclidean-time Monte-Carlo methods yield ground-state spectra and static correlation functions that can, in principle, guide state preparation. In this work, we exploit this classical information to bridge Euclidean…
▽ More
Quantum simulators hold great promise for studying real-time (Minkowski) dynamics of quantum field theories. Nonetheless, preparing non-trivial initial states remains a major obstacle. Euclidean-time Monte-Carlo methods yield ground-state spectra and static correlation functions that can, in principle, guide state preparation. In this work, we exploit this classical information to bridge Euclidean and Minkowski descriptions for a (1+1)-dimensional interacting scalar field theory. We propose variational ansatz families which achieve comparable ground-state energies, yet exhibit distinct correlations and local non-Gaussianity. By optimizing selected wavefunction moments with Monte-Carlo data, we obtain ansatzes that can be efficiently translated into quantum circuits. Our algorithmic cost analysis shows these circuits' gate complexity scales polynomially in system size. Our work paves the way for systematically leveraging classically-computed information to prepare initial states in quantum field theories of interest in nature.
△ Less
Submitted 28 October, 2025;
originally announced October 2025.
-
Observation of quantum-field-theory dynamics on a spin-phonon quantum computer
Authors:
Anton T. Than,
Saurabh V. Kadam,
Vinay Vikramaditya,
Nhung H. Nguyen,
Xingxin Liu,
Zohreh Davoudi,
Alaina M. Green,
Norbert M. Linke
Abstract:
Simulating out-of-equilibrium dynamics of quantum field theories in nature is challenging with classical methods, but is a promising application for quantum computers. Unfortunately, simulating interacting bosonic fields involves a high boson-to-qubit encoding overhead. Furthermore, when mapping to qubits, the infinite-dimensional Hilbert space of bosons is necessarily truncated, with truncation e…
▽ More
Simulating out-of-equilibrium dynamics of quantum field theories in nature is challenging with classical methods, but is a promising application for quantum computers. Unfortunately, simulating interacting bosonic fields involves a high boson-to-qubit encoding overhead. Furthermore, when mapping to qubits, the infinite-dimensional Hilbert space of bosons is necessarily truncated, with truncation errors that grow with energy and time. A qubit-based quantum computer, augmented with an active bosonic register, and with qubit, bosonic, and mixed qubit-boson quantum gates, offers a more powerful platform for simulating bosonic theories. We demonstrate this capability experimentally in a hybrid analog-digital trapped-ion quantum computer, where qubits are encoded in the internal states of the ions, and the bosons in the ions' motional states. Specifically, we simulate nonequilibrium dynamics of a (1+1)-dimensional Yukawa model, a simplified model of interacting nucleons and pions, and measure fermion- and boson-occupation-state probabilities. These dynamics populate high bosonic-field excitations starting from an empty state, and the experimental results capture well such high-occupation states. This simulation approaches the regime where classical methods become challenging, bypasses the need for a large qubit overhead, and removes truncation errors. Our results, therefore, open the way to achieving demonstrable quantum advantage in qubit-boson quantum computing.
△ Less
Submitted 14 September, 2025;
originally announced September 2025.
-
TASI/CERN/KITP Lecture Notes on "Toward Quantum Computing Gauge Theories of Nature"
Authors:
Zohreh Davoudi
Abstract:
A hallmark of the computational campaign in nuclear and particle physics is the lattice-gauge-theory program. It continues to enable theoretical predictions for a range of phenomena in nature from the underlying Standard Model. The emergence of a new computational paradigm based on quantum computing, therefore, can introduce further advances in this program. In particular, it is believed that quan…
▽ More
A hallmark of the computational campaign in nuclear and particle physics is the lattice-gauge-theory program. It continues to enable theoretical predictions for a range of phenomena in nature from the underlying Standard Model. The emergence of a new computational paradigm based on quantum computing, therefore, can introduce further advances in this program. In particular, it is believed that quantum computing will make possible first-principles studies of matter at extreme densities, and in and out of equilibrium, hence improving our theoretical description of early universe, astrophysical environments, and high-energy particle collisions. Developing and advancing a quantum-computing based lattice-gauge-theory program, therefore, is a vibrant and fast-moving area of research in theoretical nuclear and particle physics.
These lecture notes introduce the topic of quantum computing lattice gauge theories in a pedagogical manner, with an emphasis on theoretical and algorithmic aspects of the program, and on the most common approaches and practices, to keep the presentation focused and useful. Hamiltonian formulation of lattice gauge theories is introduced within the Kogut-Susskind framework, the notion of Hilbert space and physical states is discussed, and some elementary numerical methods for performing Hamiltonian simulations are discussed. Quantum-simulation preliminaries and digital quantum-computing basics are presented, which set the stage for concrete examples of gauge-theory quantum-circuit design and resource analysis. A step-by-step analysis is provided for a simpler Abelian gauge theory, and an overview of our current understanding of the quantum-computing cost of quantum chromodynamics is presented in the end. Examples and exercises augment the material, and reinforce the concepts and methods introduced throughout.
△ Less
Submitted 22 September, 2025; v1 submitted 21 July, 2025;
originally announced July 2025.
-
Euclidean-Monte-Carlo-informed ground-state preparation for quantum simulation of scalar field theory
Authors:
Navya Gupta,
Christopher David White,
Zohreh Davoudi
Abstract:
Quantum simulators offer great potential for investigating dynamical properties of quantum field theories. However, preparing accurate non-trivial initial states for these simulations is challenging. Classical Euclidean-time Monte-Carlo methods provide a wealth of information about states of interest to quantum simulations. Thus, it is desirable to facilitate state preparation on quantum simulator…
▽ More
Quantum simulators offer great potential for investigating dynamical properties of quantum field theories. However, preparing accurate non-trivial initial states for these simulations is challenging. Classical Euclidean-time Monte-Carlo methods provide a wealth of information about states of interest to quantum simulations. Thus, it is desirable to facilitate state preparation on quantum simulators using this information. To this end, we present a fully classical pipeline for generating efficient quantum circuits for preparing the ground state of an interacting scalar field theory in 1+1 dimensions. The first element of this pipeline is a variational ansatz family based on the stellar hierarchy for bosonic quantum systems. The second element of this pipeline is the classical moment-optimization procedure that augments the standard variational energy minimization by penalizing deviations in selected sets of ground-state correlation functions (i.e., moments). The values of ground-state moments are sourced from classical Euclidean methods. The resulting states yield comparable ground-state energy estimates but exhibit distinct correlations and local non-Gaussianity. The third element of this pipeline is translating the moment-optimized ansatz into an efficient quantum circuit with an asymptotic cost that is polynomial in system size. This work opens the way to systematically applying classically obtained knowledge of states to prepare accurate initial states in quantum field theories of interest in nature.
△ Less
Submitted 2 June, 2025;
originally announced June 2025.
-
Quantum computation of hadron scattering in a lattice gauge theory
Authors:
Zohreh Davoudi,
Chung-Chun Hsieh,
Saurabh V. Kadam
Abstract:
We present a digital quantum computation of two-hadron scattering in a $Z_2$ lattice gauge theory in 1+1 dimensions. We prepare well-separated single-particle wave packets with desired momentum-space wavefunctions, and simulate their collision through digitized time evolution. Multiple hadronic wave packets can be produced using the efficient, systematically improvable algorithm of this work, achi…
▽ More
We present a digital quantum computation of two-hadron scattering in a $Z_2$ lattice gauge theory in 1+1 dimensions. We prepare well-separated single-particle wave packets with desired momentum-space wavefunctions, and simulate their collision through digitized time evolution. Multiple hadronic wave packets can be produced using the efficient, systematically improvable algorithm of this work, achieving high fidelity with the target initial state. Specifically, employing a trapped-ion quantum computer (IonQ Forte), we prepare up to three meson wave packets using 11 and 27 system qubits, and simulate collision dynamics of two meson wave packets for the smaller system. Results for local observables are consistent with numerical simulations at early times, but decoherence effects limit evolution into long times. We demonstrate the critical role of high-fidelity initial states for precision measurements of state-sensitive observables, such as $S$-matrix elements. Our work establishes the potential of quantum computers in simulating hadron-scattering processes in strongly interacting gauge theories.
△ Less
Submitted 26 May, 2025;
originally announced May 2025.
-
Work and heat exchanged during sudden quenches of strongly coupled quantum systems
Authors:
Zohreh Davoudi,
Christopher Jarzynski,
Niklas Mueller,
Greeshma Oruganti,
Connor Powers,
Nicole Yunger Halpern
Abstract:
How should one define thermodynamic quantities (internal energy, work, heat, etc.) for quantum systems coupled to their environments strongly? We examine three (classically equivalent) definitions of a quantum system's internal energy under strong-coupling conditions. Each internal-energy definition implies a definition of work and a definition of heat. Our study focuses on quenches, common proces…
▽ More
How should one define thermodynamic quantities (internal energy, work, heat, etc.) for quantum systems coupled to their environments strongly? We examine three (classically equivalent) definitions of a quantum system's internal energy under strong-coupling conditions. Each internal-energy definition implies a definition of work and a definition of heat. Our study focuses on quenches, common processes in which the Hamiltonian changes abruptly. In these processes, the first law of thermodynamics holds for each set of definitions by construction. However, we prove that only two sets obey the second law. We illustrate our findings using a simple spin model. Our results guide studies of thermodynamic quantities in strongly coupled quantum systems.
△ Less
Submitted 26 February, 2025;
originally announced February 2025.
-
Observation of string-breaking dynamics in a quantum simulator
Authors:
Arinjoy De,
Alessio Lerose,
De Luo,
Federica M. Surace,
Alexander Schuckert,
Elizabeth R. Bennewitz,
Brayden Ware,
William Morong,
Kate S. Collins,
Zohreh Davoudi,
Alexey V. Gorshkov,
Or Katz,
Christopher Monroe
Abstract:
Spontaneous particle-pair formation is a fundamental phenomenon in nature. It can, for example, appear when the potential energy between two particles increases with separation, as if they were connected by a tense string. Beyond a critical separation, new particle pairs can form, causing the string to break. String-breaking dynamics in quantum chromodynamics play a vital role in high-energy parti…
▽ More
Spontaneous particle-pair formation is a fundamental phenomenon in nature. It can, for example, appear when the potential energy between two particles increases with separation, as if they were connected by a tense string. Beyond a critical separation, new particle pairs can form, causing the string to break. String-breaking dynamics in quantum chromodynamics play a vital role in high-energy particle collisions and early universe evolution. Simulating string evolution and hadron formation is, therefore, a grand challenge in modern physics. Quantum simulators, well-suited for studying dynamics, are expected to outperform classical computing methods. However, the required experimental capabilities to simulate string-breaking dynamics have not yet been demonstrated, even for simpler models of the strong force. We experimentally probe, for the first time, the spatiotemporal dynamics of string-breaking in a (1+1)-dimensional $\mathbb{Z}_2$ lattice gauge theory using a fully programmable trapped-ion quantum simulator. We emulate external static charges and strings via site-dependent magnetic-field control enabled by a dual array of tightly focused laser beams targeting individual ions. First, we study how confinement affects isolated charges, finding that they freely spread without string tension but exhibit localized oscillations when tension is increased. Then, we observe and characterize string-breaking dynamics of a string stretched between two static charges after an abrupt increase in string tension. Charge pairs appear near the string edges and spread into the bulk, revealing a route to dynamical string-breaking distinct from the conventional Schwinger mechanism. Our work demonstrates that analog quantum simulators have achieved the necessary control to explore string-breaking dynamics, which may ultimately be relevant to nuclear and high-energy physics.
△ Less
Submitted 17 October, 2024;
originally announced October 2024.
-
Quantum Computing Universal Thermalization Dynamics in a (2+1)D Lattice Gauge Theory
Authors:
Niklas Mueller,
Tianyi Wang,
Or Katz,
Zohreh Davoudi,
Marko Cetina
Abstract:
Simulating non-equilibrium phenomena in strongly-interacting quantum many-body systems, including thermalization, is a promising application of near-term and future quantum computation. By performing experiments on a digital quantum computer consisting of fully-connected optically-controlled trapped ions, we study the role of entanglement in the thermalization dynamics of a $Z_2$ lattice gauge the…
▽ More
Simulating non-equilibrium phenomena in strongly-interacting quantum many-body systems, including thermalization, is a promising application of near-term and future quantum computation. By performing experiments on a digital quantum computer consisting of fully-connected optically-controlled trapped ions, we study the role of entanglement in the thermalization dynamics of a $Z_2$ lattice gauge theory in 2+1 spacetime dimensions. Using randomized-measurement protocols, we efficiently learn a classical approximation of non-equilibrium states that yields the gap-ratio distribution and the spectral form factor of the entanglement Hamiltonian. These observables exhibit universal early-time signals for quantum chaos, a prerequisite for thermalization. Our work, therefore, establishes quantum computers as robust tools for studying universal features of thermalization in complex many-body systems, including in gauge theories.
△ Less
Submitted 17 September, 2025; v1 submitted 31 July, 2024;
originally announced August 2024.
-
Quantum Simulating Nature's Fundamental Fields
Authors:
Christian W. Bauer,
Zohreh Davoudi,
Natalie Klco,
Martin J. Savage
Abstract:
Simulating key static and dynamic properties of matter -- from creation in the Big Bang to evolution into sub-atomic and astrophysical environments -- arising from the underlying fundamental quantum fields of the Standard Model and their effective descriptions, lies beyond the capabilities of classical computation alone. Advances in quantum technologies have improved control over quantum entanglem…
▽ More
Simulating key static and dynamic properties of matter -- from creation in the Big Bang to evolution into sub-atomic and astrophysical environments -- arising from the underlying fundamental quantum fields of the Standard Model and their effective descriptions, lies beyond the capabilities of classical computation alone. Advances in quantum technologies have improved control over quantum entanglement and coherence to the point where robust simulations are anticipated to be possible in the foreseeable future. We discuss the emerging area of quantum simulations of Standard-Model physics, challenges that lie ahead, and opportunities for progress in the context of nuclear and high-energy physics.
△ Less
Submitted 9 April, 2024;
originally announced April 2024.
-
Quantum thermodynamics of nonequilibrium processes in lattice gauge theories
Authors:
Zohreh Davoudi,
Christopher Jarzynski,
Niklas Mueller,
Greeshma Oruganti,
Connor Powers,
Nicole Yunger Halpern
Abstract:
A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early universe and in particle colliders, starting from the Standard Model. Classical-computing methods, via the framework of lattice gauge theory, have experienced limited success in this mission. Quantum simulation of lattice gauge theories holds promise for overcoming computational…
▽ More
A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early universe and in particle colliders, starting from the Standard Model. Classical-computing methods, via the framework of lattice gauge theory, have experienced limited success in this mission. Quantum simulation of lattice gauge theories holds promise for overcoming computational limitations. Because of local constraints (Gauss's laws), lattice gauge theories have an intricate Hilbert-space structure. This structure complicates the definition of thermodynamic properties of systems coupled to reservoirs during equilibrium and nonequilibrium processes. We show how to define thermodynamic quantities such as work and heat using strong-coupling thermodynamics, a framework that has recently burgeoned within the field of quantum thermodynamics. Our definitions suit instantaneous quenches, simple nonequilibrium processes undertaken in quantum simulators. To illustrate our framework, we compute the work and heat exchanged during a quench in a $\mathbb{Z}_2$ lattice gauge theory coupled to matter in 1+1 dimensions. The thermodynamic quantities, as functions of the quench parameter, evidence a phase transition. For general thermal states, we derive a simple relation between a quantum many-body system's entanglement Hamiltonian, measurable with quantum-information-processing tools, and the Hamiltonian of mean force, used to define strong-coupling thermodynamic quantities.
△ Less
Submitted 22 January, 2025; v1 submitted 3 April, 2024;
originally announced April 2024.
-
Simulating Meson Scattering on Spin Quantum Simulators
Authors:
Elizabeth R. Bennewitz,
Brayden Ware,
Alexander Schuckert,
Alessio Lerose,
Federica M. Surace,
Ron Belyansky,
William Morong,
De Luo,
Arinjoy De,
Kate S. Collins,
Or Katz,
Christopher Monroe,
Zohreh Davoudi,
Alexey V. Gorshkov
Abstract:
Studying high-energy collisions of composite particles, such as hadrons and nuclei, is an outstanding goal for quantum simulators. However, preparation of hadronic wave packets has posed a significant challenge, due to the complexity of hadrons and the precise structure of wave packets. This has limited demonstrations of hadron scattering on quantum simulators to date. Observations of confinement…
▽ More
Studying high-energy collisions of composite particles, such as hadrons and nuclei, is an outstanding goal for quantum simulators. However, preparation of hadronic wave packets has posed a significant challenge, due to the complexity of hadrons and the precise structure of wave packets. This has limited demonstrations of hadron scattering on quantum simulators to date. Observations of confinement and composite excitations in quantum spin systems have opened up the possibility to explore scattering dynamics in spin models. In this article, we develop two methods to create entangled spin states corresponding to wave packets of composite particles in analog quantum simulators of Ising spin Hamiltonians. One wave-packet preparation method uses the blockade effect enabled by beyond-nearest-neighbor Ising spin interactions. The other method utilizes a quantum-bus-mediated exchange, such as the native spin-phonon coupling in trapped-ion arrays. With a focus on trapped-ion simulators, we numerically benchmark both methods and show that high-fidelity wave packets can be achieved in near-term experiments. We numerically study scattering of wave packets for experimentally realizable parameters in the Ising model and find inelastic-scattering regimes, corresponding to particle production in the scattering event, with prominent and distinct experimental signals. Our proposal, therefore, demonstrates the potential of observing inelastic scattering in near-term quantum simulators.
△ Less
Submitted 8 June, 2025; v1 submitted 11 March, 2024;
originally announced March 2024.
-
Long-Distance Nuclear Matrix Elements for Neutrinoless Double-Beta Decay from Lattice QCD
Authors:
Zohreh Davoudi,
William Detmold,
Zhenghao Fu,
Anthony V. Grebe,
William Jay,
David Murphy,
Patrick Oare,
Phiala E. Shanahan,
Michael L. Wagman
Abstract:
Neutrinoless double-beta ($0νββ$) decay is a heretofore unobserved process which, if observed, would imply that neutrinos are Majorana particles. Interpretations of the stringent experimental constraints on $0νββ$-decay half-lives require calculations of nuclear matrix elements. This work presents the first lattice quantum-chromodynamics (LQCD) calculation of the matrix element for $0νββ$ decay in…
▽ More
Neutrinoless double-beta ($0νββ$) decay is a heretofore unobserved process which, if observed, would imply that neutrinos are Majorana particles. Interpretations of the stringent experimental constraints on $0νββ$-decay half-lives require calculations of nuclear matrix elements. This work presents the first lattice quantum-chromodynamics (LQCD) calculation of the matrix element for $0νββ$ decay in a multi-nucleon system, specifically the $nn \rightarrow pp ee$ transition, mediated by a light left-handed Majorana neutrino propagating over nuclear-scale distances. This calculation is performed with quark masses corresponding to a pion mass of $m_π= 806$ MeV at a single lattice spacing and volume. The statistically cleaner $Σ^- \rightarrow Σ^+ ee$ transition is also computed in order to investigate various systematic uncertainties. The prospects for matching the results of LQCD calculations onto a nuclear effective field theory to determine a leading-order low-energy constant relevant for $0νββ$ decay with a light Majorana neutrino are investigated. This work, therefore, sets the stage for future calculations at physical values of the quark masses that, combined with effective field theory and nuclear many-body studies, will provide controlled theoretical inputs to experimental searches of $0νββ$ decay.
△ Less
Submitted 14 February, 2024;
originally announced February 2024.
-
Scattering wave packets of hadrons in gauge theories: Preparation on a quantum computer
Authors:
Zohreh Davoudi,
Chung-Chun Hsieh,
Saurabh V. Kadam
Abstract:
Quantum simulation holds promise of enabling a complete description of high-energy scattering processes rooted in gauge theories of the Standard Model. A first step in such simulations is preparation of interacting hadronic wave packets. To create the wave packets, one typically resorts to adiabatic evolution to bridge between wave packets in the free theory and those in the interacting theory, re…
▽ More
Quantum simulation holds promise of enabling a complete description of high-energy scattering processes rooted in gauge theories of the Standard Model. A first step in such simulations is preparation of interacting hadronic wave packets. To create the wave packets, one typically resorts to adiabatic evolution to bridge between wave packets in the free theory and those in the interacting theory, rendering the simulation resource intensive. In this work, we construct a wave-packet creation operator directly in the interacting theory to circumvent adiabatic evolution, taking advantage of resource-efficient schemes for ground-state preparation, such as variational quantum eigensolvers. By means of an ansatz for bound mesonic excitations in confining gauge theories, which is subsequently optimized using classical or quantum methods, we show that interacting mesonic wave packets can be created efficiently and accurately using digital quantum algorithms that we develop. Specifically, we obtain high-fidelity mesonic wave packets in the $Z_2$ and $U(1)$ lattice gauge theories coupled to fermionic matter in 1+1 dimensions. Our method is applicable to both perturbative and non-perturbative regimes of couplings. The wave-packet creation circuit for the case of the $Z_2$ lattice gauge theory is built and implemented on the Quantinuum H1-1 trapped-ion quantum computer using 13 qubits and up to 308 entangling gates. The fidelities agree well with classical benchmark calculations after employing a simple symmetry-based noise-mitigation technique. This work serves as a step toward quantum computing scattering processes in quantum chromodynamics.
△ Less
Submitted 4 November, 2024; v1 submitted 1 February, 2024;
originally announced February 2024.
-
Quantum Algorithms for Simulating Nuclear Effective Field Theories
Authors:
James D. Watson,
Jacob Bringewatt,
Alexander F. Shaw,
Andrew M. Childs,
Alexey V. Gorshkov,
Zohreh Davoudi
Abstract:
Quantum computers offer the potential to simulate nuclear processes that are classically intractable. With the goal of understanding the necessary quantum resources to realize this potential, we employ state-of-the-art Hamiltonian-simulation methods, and conduct a thorough algorithmic analysis, to estimate the qubit and gate costs to simulate low-energy effective field theories (EFTs) of nuclear p…
▽ More
Quantum computers offer the potential to simulate nuclear processes that are classically intractable. With the goal of understanding the necessary quantum resources to realize this potential, we employ state-of-the-art Hamiltonian-simulation methods, and conduct a thorough algorithmic analysis, to estimate the qubit and gate costs to simulate low-energy effective field theories (EFTs) of nuclear physics. Within the framework of nuclear lattice EFT, we obtain simulation costs for the leading-order pionless and pionful EFTs. For the latter, we consider both static pions represented by a one-pion-exchange potential between the nucleons, and dynamical pions represented by relativistic bosonic fields coupled to non-relativistic nucleons. Within these models, we examine the resource costs for the tasks of time evolution and energy estimation for physically relevant scales. We account for model errors associated with truncating either long-range interactions in the one-pion-exchange EFT or the pionic Hilbert space in the dynamical-pion EFT, and for algorithmic errors associated with product-formula approximations and quantum phase estimation. We find that the pionless EFT is the least costly to simulate, followed by the one-pion-exchange theory, then the dynamical-pion theory. We demonstrate how symmetries of the low-energy nuclear Hamiltonians can be utilized to obtain tighter error bounds. By retaining the locality of nucleonic interactions when mapped to qubits, we achieve reduced circuit depth and substantial parallelization. In the process, we develop new methods to bound the algorithmic error for classes of fermionic number-preserving Hamiltonians, and obtain tighter Trotter error bounds by explicitly computing nested commutators of Hamiltonian terms. Compared to previous estimates for the pionless EFT, our results represent an improvement by several orders of magnitude.
△ Less
Submitted 21 July, 2025; v1 submitted 8 December, 2023;
originally announced December 2023.
-
Lattice quantum chromodynamics at large isospin density: 6144 pions in a box
Authors:
Ryan Abbott,
William Detmold,
Fernando Romero-López,
Zohreh Davoudi,
Marc Illa,
Assumpta Parreño,
Robert J. Perry,
Phiala E. Shanahan,
Michael L. Wagman
Abstract:
We present an algorithm to compute correlation functions for systems with the quantum numbers of many identical mesons from lattice quantum chromodynamics (QCD). The algorithm is numerically stable and allows for the computation of $n$-pion correlation functions for $n \in \{ 1, \dots, N\}$ using a single $N \times N$ matrix decomposition, improving on previous algorithms. We apply the algorithm t…
▽ More
We present an algorithm to compute correlation functions for systems with the quantum numbers of many identical mesons from lattice quantum chromodynamics (QCD). The algorithm is numerically stable and allows for the computation of $n$-pion correlation functions for $n \in \{ 1, \dots, N\}$ using a single $N \times N$ matrix decomposition, improving on previous algorithms. We apply the algorithm to calculations of correlation functions with up to 6144 $π^+$s using two ensembles of gauge field configurations generated with quark masses corresponding to a pion mass $m_π= 170$ MeV and spacetime volumes of $(4.4^3\times 8.8)\ {\rm fm}^4$ and $(5.8^3\times 11.6)\ {\rm fm}^4$. We also discuss statistical techniques for the analysis of such systems, in which the correlation functions vary over many orders of magnitude. In particular, we observe that the many-pion correlation functions are well approximated by log-normal distributions, allowing the extraction of the energies of these systems. Using these energies, the large-isospin-density, zero-baryon-density region of the QCD phase diagram is explored. A peak is observed in the energy density at an isospin chemical potential $μ_I\sim 1.5 m_π$, signalling the transition into a Bose-Einstein condensed phase. The isentropic speed of sound in the medium is seen to exceed the ideal-gas (conformal) limit ($c_s^2\leq 1/3$) over a wide range of chemical potential before falling towards the asymptotic expectation at $μ_I\sim 15 m_π$. These, and other thermodynamic observables, indicate that the isospin chemical potential must be large for the system to be well described by an ideal gas or perturbative QCD.
△ Less
Submitted 27 July, 2023;
originally announced July 2023.
-
High-Energy Collision of Quarks and Mesons in the Schwinger Model: From Tensor Networks to Circuit QED
Authors:
Ron Belyansky,
Seth Whitsitt,
Niklas Mueller,
Ali Fahimniya,
Elizabeth R. Bennewitz,
Zohreh Davoudi,
Alexey V. Gorshkov
Abstract:
With the aim of studying nonperturbative out-of-equilibrium dynamics of high-energy particle collisions on quantum simulators, we investigate the scattering dynamics of lattice quantum electrodynamics in 1+1 dimensions. Working in the bosonized formulation of the model and in the thermodynamic limit, we use uniform-matrix-product-state tensor networks to construct multi-particle wave-packet states…
▽ More
With the aim of studying nonperturbative out-of-equilibrium dynamics of high-energy particle collisions on quantum simulators, we investigate the scattering dynamics of lattice quantum electrodynamics in 1+1 dimensions. Working in the bosonized formulation of the model and in the thermodynamic limit, we use uniform-matrix-product-state tensor networks to construct multi-particle wave-packet states, evolve them in time, and detect outgoing particles post collision. This facilitates the numerical simulation of scattering experiments in both confined and deconfined regimes of the model at different energies, giving rise to rich phenomenology, including inelastic production of quark and meson states, meson disintegration, and dynamical string formation and breaking. We obtain elastic and inelastic scattering cross sections, together with time-resolved momentum and position distributions of the outgoing particles. Furthermore, we propose an analog circuit-QED implementation of the scattering process that is native to the platform, requires minimal ingredients and approximations, and enables practical schemes for particle wave-packet preparation and evolution. This study highlights the role of classical and quantum simulation in enhancing our understanding of scattering processes in quantum field theories in real time.
△ Less
Submitted 28 February, 2024; v1 submitted 5 July, 2023;
originally announced July 2023.
-
Fundamental Symmetries, Neutrons, and Neutrinos (FSNN): Whitepaper for the 2023 NSAC Long Range Plan
Authors:
B. Acharya,
C. Adams,
A. A. Aleksandrova,
K. Alfonso,
P. An,
S. Baeßler,
A. B. Balantekin,
P. S. Barbeau,
F. Bellini,
V. Bellini,
R. S. Beminiwattha,
J. C. Bernauer,
T. Bhattacharya,
M. Bishof,
A. E. Bolotnikov,
P. A. Breur,
M. Brodeur,
J. P. Brodsky,
L. J. Broussard,
T. Brunner,
D. P. Burdette,
J. Caylor,
M. Chiu,
V. Cirigliano,
J. A. Clark
, et al. (154 additional authors not shown)
Abstract:
This whitepaper presents the research priorities decided on by attendees of the 2022 Town Meeting for Fundamental Symmetries, Neutrons and Neutrinos, which took place December 13-15, 2022 in Chapel Hill, NC, as part of the Nuclear Science Advisory Committee (NSAC) 2023 Long Range Planning process. A total of 275 scientists registered for the meeting. The whitepaper makes a number of explicit recom…
▽ More
This whitepaper presents the research priorities decided on by attendees of the 2022 Town Meeting for Fundamental Symmetries, Neutrons and Neutrinos, which took place December 13-15, 2022 in Chapel Hill, NC, as part of the Nuclear Science Advisory Committee (NSAC) 2023 Long Range Planning process. A total of 275 scientists registered for the meeting. The whitepaper makes a number of explicit recommendations and justifies them in detail.
△ Less
Submitted 6 April, 2023;
originally announced April 2023.
-
The Present and Future of QCD
Authors:
P. Achenbach,
D. Adhikari,
A. Afanasev,
F. Afzal,
C. A. Aidala,
A. Al-bataineh,
D. K. Almaalol,
M. Amaryan,
D. Androić,
W. R. Armstrong,
M. Arratia,
J. Arrington,
A. Asaturyan,
E. C. Aschenauer,
H. Atac,
H. Avakian,
T. Averett,
C. Ayerbe Gayoso,
X. Bai,
K. N. Barish,
N. Barnea,
G. Basar,
M. Battaglieri,
A. A. Baty,
I. Bautista
, et al. (378 additional authors not shown)
Abstract:
This White Paper presents the community inputs and scientific conclusions from the Hot and Cold QCD Town Meeting that took place September 23-25, 2022 at MIT, as part of the Nuclear Science Advisory Committee (NSAC) 2023 Long Range Planning process. A total of 424 physicists registered for the meeting. The meeting highlighted progress in Quantum Chromodynamics (QCD) nuclear physics since the 2015…
▽ More
This White Paper presents the community inputs and scientific conclusions from the Hot and Cold QCD Town Meeting that took place September 23-25, 2022 at MIT, as part of the Nuclear Science Advisory Committee (NSAC) 2023 Long Range Planning process. A total of 424 physicists registered for the meeting. The meeting highlighted progress in Quantum Chromodynamics (QCD) nuclear physics since the 2015 LRP (LRP15) and identified key questions and plausible paths to obtaining answers to those questions, defining priorities for our research over the coming decade. In defining the priority of outstanding physics opportunities for the future, both prospects for the short (~ 5 years) and longer term (5-10 years and beyond) are identified together with the facilities, personnel and other resources needed to maximize the discovery potential and maintain United States leadership in QCD physics worldwide. This White Paper is organized as follows: In the Executive Summary, we detail the Recommendations and Initiatives that were presented and discussed at the Town Meeting, and their supporting rationales. Section 2 highlights major progress and accomplishments of the past seven years. It is followed, in Section 3, by an overview of the physics opportunities for the immediate future, and in relation with the next QCD frontier: the EIC. Section 4 provides an overview of the physics motivations and goals associated with the EIC. Section 5 is devoted to the workforce development and support of diversity, equity and inclusion. This is followed by a dedicated section on computing in Section 6. Section 7 describes the national need for nuclear data science and the relevance to QCD research.
△ Less
Submitted 4 March, 2023;
originally announced March 2023.
-
Quantum Information Science and Technology for Nuclear Physics. Input into U.S. Long-Range Planning, 2023
Authors:
Douglas Beck,
Joseph Carlson,
Zohreh Davoudi,
Joseph Formaggio,
Sofia Quaglioni,
Martin Savage,
Joao Barata,
Tanmoy Bhattacharya,
Michael Bishof,
Ian Cloet,
Andrea Delgado,
Michael DeMarco,
Caleb Fink,
Adrien Florio,
Marianne Francois,
Dorota Grabowska,
Shannon Hoogerheide,
Mengyao Huang,
Kazuki Ikeda,
Marc Illa,
Kyungseon Joo,
Dmitri Kharzeev,
Karol Kowalski,
Wai Kin Lai,
Kyle Leach
, et al. (76 additional authors not shown)
Abstract:
In preparation for the 2023 NSAC Long Range Plan (LRP), members of the Nuclear Science community gathered to discuss the current state of, and plans for further leveraging opportunities in, QIST in NP research at the Quantum Information Science for U.S. Nuclear Physics Long Range Planning workshop, held in Santa Fe, New Mexico on January 31 - February 1, 2023. The workshop included 45 in-person pa…
▽ More
In preparation for the 2023 NSAC Long Range Plan (LRP), members of the Nuclear Science community gathered to discuss the current state of, and plans for further leveraging opportunities in, QIST in NP research at the Quantum Information Science for U.S. Nuclear Physics Long Range Planning workshop, held in Santa Fe, New Mexico on January 31 - February 1, 2023. The workshop included 45 in-person participants and 53 remote attendees. The outcome of the workshop identified strategic plans and requirements for the next 5-10 years to advance quantum sensing and quantum simulations within NP, and to develop a diverse quantum-ready workforce. The plans include resolutions endorsed by the participants to address the compelling scientific opportunities at the intersections of NP and QIST. These endorsements are aligned with similar affirmations by the LRP Computational Nuclear Physics and AI/ML Workshop, the Nuclear Structure, Reactions, and Astrophysics LRP Town Hall, and the Fundamental Symmetries, Neutrons, and Neutrinos LRP Town Hall communities.
△ Less
Submitted 28 February, 2023;
originally announced March 2023.
-
General quantum algorithms for Hamiltonian simulation with applications to a non-Abelian lattice gauge theory
Authors:
Zohreh Davoudi,
Alexander F. Shaw,
Jesse R. Stryker
Abstract:
With a focus on universal quantum computing for quantum simulation, and through the example of lattice gauge theories, we introduce rather general quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple (bosonic and fermionic) quantum numbers with non-trivial functional coefficients. In particular, we analyze diagonalization of…
▽ More
With a focus on universal quantum computing for quantum simulation, and through the example of lattice gauge theories, we introduce rather general quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple (bosonic and fermionic) quantum numbers with non-trivial functional coefficients. In particular, we analyze diagonalization of Hamiltonian terms using a singular-value decomposition technique, and discuss how the achieved diagonal unitaries in the digitized time-evolution operator can be implemented. The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions, for which a complete quantum-resource analysis within different computational models is presented. The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories. The example chosen further demonstrates the importance of adopting efficient theoretical formulations: it is shown that an explicitly gauge-invariant formulation using loop, string, and hadron degrees of freedom simplifies the algorithms and lowers the cost compared with the standard formulations based on angular-momentum as well as the Schwinger-boson degrees of freedom. The loop-string-hadron formulation further retains the non-Abelian gauge symmetry despite the inexactness of the digitized simulation, without the need for costly controlled operations. Such theoretical and algorithmic considerations are likely to be essential in quantumly simulating other complex theories of relevance to nature.
△ Less
Submitted 14 December, 2023; v1 submitted 28 December, 2022;
originally announced December 2022.
-
Long Range Plan: Dense matter theory for heavy-ion collisions and neutron stars
Authors:
Alessandro Lovato,
Travis Dore,
Robert D. Pisarski,
Bjoern Schenke,
Katerina Chatziioannou,
Jocelyn S. Read,
Philippe Landry,
Pawel Danielewicz,
Dean Lee,
Scott Pratt,
Fabian Rennecke,
Hannah Elfner,
Veronica Dexheimer,
Rajesh Kumar,
Michael Strickland,
Johannes Jahan,
Claudia Ratti,
Volodymyr Vovchenko,
Mikhail Stephanov,
Dekrayat Almaalol,
Gordon Baym,
Mauricio Hippert,
Jacquelyn Noronha-Hostler,
Jorge Noronha,
Enrico Speranza
, et al. (39 additional authors not shown)
Abstract:
Since the release of the 2015 Long Range Plan in Nuclear Physics, major events have occurred that reshaped our understanding of quantum chromodynamics (QCD) and nuclear matter at large densities, in and out of equilibrium. The US nuclear community has an opportunity to capitalize on advances in astrophysical observations and nuclear experiments and engage in an interdisciplinary effort in the theo…
▽ More
Since the release of the 2015 Long Range Plan in Nuclear Physics, major events have occurred that reshaped our understanding of quantum chromodynamics (QCD) and nuclear matter at large densities, in and out of equilibrium. The US nuclear community has an opportunity to capitalize on advances in astrophysical observations and nuclear experiments and engage in an interdisciplinary effort in the theory of dense baryonic matter that connects low- and high-energy nuclear physics, astrophysics, gravitational waves physics, and data science
△ Less
Submitted 7 November, 2022; v1 submitted 3 November, 2022;
originally announced November 2022.
-
Quantum computation of dynamical quantum phase transitions and entanglement tomography in a lattice gauge theory
Authors:
Niklas Mueller,
Joseph A. Carolan,
Andrew Connelly,
Zohreh Davoudi,
Eugene F. Dumitrescu,
Kübra Yeter-Aydeniz
Abstract:
Strongly-coupled gauge theories far from equilibrium may exhibit unique features that could illuminate the physics of the early universe and of hadron and ion colliders. Studying real-time phenomena has proven challenging with classical-simulation methods, but is a natural application of quantum simulation. To demonstrate this prospect, we quantum compute non-equal time correlation functions and p…
▽ More
Strongly-coupled gauge theories far from equilibrium may exhibit unique features that could illuminate the physics of the early universe and of hadron and ion colliders. Studying real-time phenomena has proven challenging with classical-simulation methods, but is a natural application of quantum simulation. To demonstrate this prospect, we quantum compute non-equal time correlation functions and perform entanglement tomography of non-equilibrium states of a simple lattice gauge theory, the Schwinger model, using a trapped-ion quantum computer by IonQ Inc. As an ideal target for near-term devices, a recently-predicted [Zache et al., Phys. Rev. Lett. 122, 050403 (2019)] dynamical quantum phase transition in this model is studied by preparing, quenching, and tracking the subsequent non-equilibrium dynamics in three ways: i) overlap echos signaling dynamical transitions, ii) non-equal time correlation functions with an underlying topological nature, and iii) the entanglement structure of non-equilibrium states, including entanglement Hamiltonians. These results constitute the first observation of a dynamical quantum phase transition in a lattice gauge theory on a quantum computer, and are a first step toward investigating topological phenomena in nuclear and high-energy physics using quantum technologies.
△ Less
Submitted 11 September, 2023; v1 submitted 6 October, 2022;
originally announced October 2022.
-
Report of the Snowmass 2021 Topical Group on Lattice Gauge Theory
Authors:
Zohreh Davoudi,
Ethan T. Neil,
Christian W. Bauer,
Tanmoy Bhattacharya,
Thomas Blum,
Peter Boyle,
Richard C. Brower,
Simon Catterall,
Norman H. Christ,
Vincenzo Cirigliano,
Gilberto Colangelo,
Carleton DeTar,
William Detmold,
Robert G. Edwards,
Aida X. El-Khadra,
Steven Gottlieb,
Rajan Gupta,
Daniel C. Hackett,
Anna Hasenfratz,
Taku Izubuchi,
William I. Jay,
Luchang Jin,
Christopher Kelly,
Andreas S. Kronfeld,
Christoph Lehner
, et al. (13 additional authors not shown)
Abstract:
Lattice gauge theory continues to be a powerful theoretical and computational approach to simulating strongly interacting quantum field theories, whose applications permeate almost all disciplines of modern-day research in High-Energy Physics. Whether it is to enable precision quark- and lepton-flavor physics, to uncover signals of new physics in nucleons and nuclei, to elucidate hadron structure…
▽ More
Lattice gauge theory continues to be a powerful theoretical and computational approach to simulating strongly interacting quantum field theories, whose applications permeate almost all disciplines of modern-day research in High-Energy Physics. Whether it is to enable precision quark- and lepton-flavor physics, to uncover signals of new physics in nucleons and nuclei, to elucidate hadron structure and spectrum, to serve as a numerical laboratory to reach beyond the Standard Model, or to invent and improve state-of-the-art computational paradigms, the lattice-gauge-theory program is in a prime position to impact the course of developments and enhance discovery potential of a vibrant experimental program in High-Energy Physics over the coming decade. This projection is based on abundant successful results that have emerged using lattice gauge theory over the years: on continued improvement in theoretical frameworks and algorithmic suits; on the forthcoming transition into the exascale era of high-performance computing; and on a skillful, dedicated, and organized community of lattice gauge theorists in the U.S. and worldwide. The prospects of this effort in pushing the frontiers of research in High-Energy Physics have recently been studied within the U.S. decadal Particle Physics Planning Exercise (Snowmass 2021), and the conclusions are summarized in this Topical Report.
△ Less
Submitted 21 September, 2022;
originally announced September 2022.
-
Toward Quantum Computing Phase Diagrams of Gauge Theories with Thermal Pure Quantum States
Authors:
Zohreh Davoudi,
Niklas Mueller,
Connor Powers
Abstract:
The phase diagram of strong interactions in nature at finite temperature and chemical potential remains largely unexplored theoretically due to inadequacy of Monte-Carlo-based computational techniques in overcoming a sign problem. Quantum computing offers a sign-problem-free approach but evaluating thermal expectation values is generally resource intensive on quantum computers. To facilitate therm…
▽ More
The phase diagram of strong interactions in nature at finite temperature and chemical potential remains largely unexplored theoretically due to inadequacy of Monte-Carlo-based computational techniques in overcoming a sign problem. Quantum computing offers a sign-problem-free approach but evaluating thermal expectation values is generally resource intensive on quantum computers. To facilitate thermodynamic studies of gauge theories, we propose a generalization of thermal-pure-quantum-state formulation of statistical mechanics applied to constrained gauge-theory dynamics, and numerically demonstrate that the phase diagram of a simple low-dimensional gauge theory is robustly determined using this approach, including mapping a chiral phase transition in the model at finite temperature and chemical potential. Quantum algorithms, resource requirements, and algorithmic and hardware error analysis are further discussed to motivate future implementations. Thermal pure quantum states, therefore, may present a suitable candidate for efficient thermal-state preparation in gauge theories in the era of quantum computing.
△ Less
Submitted 27 August, 2022;
originally announced August 2022.
-
Parallelization techniques for quantum simulation of fermionic systems
Authors:
Jacob Bringewatt,
Zohreh Davoudi
Abstract:
Mapping fermionic operators to qubit operators is an essential step for simulating fermionic systems on a quantum computer. We investigate how the choice of such a mapping interacts with the underlying qubit connectivity of the quantum processor to enable (or impede) parallelization of the resulting Hamiltonian-simulation algorithm. It is shown that this problem can be mapped to a path coloring pr…
▽ More
Mapping fermionic operators to qubit operators is an essential step for simulating fermionic systems on a quantum computer. We investigate how the choice of such a mapping interacts with the underlying qubit connectivity of the quantum processor to enable (or impede) parallelization of the resulting Hamiltonian-simulation algorithm. It is shown that this problem can be mapped to a path coloring problem on a graph constructed from the particular choice of encoding fermions onto qubits and the fermionic interactions onto paths. The basic version of this problem is called the weak coloring problem. Taking into account the fine-grained details of the mapping yields what is called the strong coloring problem, which leads to improved parallelization performance. A variety of illustrative analytical and numerical examples are presented to demonstrate the amount of improvement for both weak and strong coloring-based parallelizations. Our results are particularly important for implementation on near-term quantum processors where minimizing circuit depth is necessary for algorithmic feasibility.
△ Less
Submitted 30 March, 2023; v1 submitted 25 July, 2022;
originally announced July 2022.
-
Towards Precise and Accurate Calculations of Neutrinoless Double-Beta Decay: Project Scoping Workshop Report
Authors:
V. Cirigliano,
Z. Davoudi,
J. Engel,
R. J. Furnstahl,
G. Hagen,
U. Heinz,
H. Hergert,
M. Horoi,
C. W. Johnson,
A. Lovato,
E. Mereghetti,
W. Nazarewicz,
A. Nicholson,
T. Papenbrock,
S. Pastore,
M. Plumlee,
D. R. Phillips,
P. E. Shanahan,
S. R. Stroberg,
F. Viens,
A. Walker-Loud,
K. A. Wendt,
S. M. Wild
Abstract:
We present the results of a National Science Foundation (NSF) Project Scoping Workshop, the purpose of which was to assess the current status of calculations for the nuclear matrix elements governing neutrinoless double-beta decay and determine if more work on them is required. After reviewing important recent progress in the application of effective field theory, lattice quantum chromodynamics, a…
▽ More
We present the results of a National Science Foundation (NSF) Project Scoping Workshop, the purpose of which was to assess the current status of calculations for the nuclear matrix elements governing neutrinoless double-beta decay and determine if more work on them is required. After reviewing important recent progress in the application of effective field theory, lattice quantum chromodynamics, and ab initio nuclear-structure theory to double-beta decay, we discuss the state of the art in nuclear-physics uncertainty quantification and then construct a road map for work in all these areas to fully complement the increasingly sensitive experiments in operation and under development. The road map contains specific projects in theoretical and computational physics as well as an uncertainty-quantification plan that employs Bayesian Model Mixing and an analysis of correlations between double-beta-decay rates and other observables. The goal of this program is a set of accurate and precise matrix elements, in all nuclei of interest to experimentalists, delivered together with carefully assessed uncertainties. Such calculations will allow crisp conclusions from the observation or non-observation of neutrinoless double-beta decay, no matter what new physics is at play.
△ Less
Submitted 3 July, 2022;
originally announced July 2022.
-
Quantum Simulation for High Energy Physics
Authors:
Christian W. Bauer,
Zohreh Davoudi,
A. Baha Balantekin,
Tanmoy Bhattacharya,
Marcela Carena,
Wibe A. de Jong,
Patrick Draper,
Aida El-Khadra,
Nate Gemelke,
Masanori Hanada,
Dmitri Kharzeev,
Henry Lamm,
Ying-Ying Li,
Junyu Liu,
Mikhail Lukin,
Yannick Meurice,
Christopher Monroe,
Benjamin Nachman,
Guido Pagano,
John Preskill,
Enrico Rinaldi,
Alessandro Roggero,
David I. Santiago,
Martin J. Savage,
Irfan Siddiqi
, et al. (6 additional authors not shown)
Abstract:
It is for the first time that Quantum Simulation for High Energy Physics (HEP) is studied in the U.S. decadal particle-physics community planning, and in fact until recently, this was not considered a mainstream topic in the community. This fact speaks of a remarkable rate of growth of this subfield over the past few years, stimulated by the impressive advancements in Quantum Information Sciences…
▽ More
It is for the first time that Quantum Simulation for High Energy Physics (HEP) is studied in the U.S. decadal particle-physics community planning, and in fact until recently, this was not considered a mainstream topic in the community. This fact speaks of a remarkable rate of growth of this subfield over the past few years, stimulated by the impressive advancements in Quantum Information Sciences (QIS) and associated technologies over the past decade, and the significant investment in this area by the government and private sectors in the U.S. and other countries. High-energy physicists have quickly identified problems of importance to our understanding of nature at the most fundamental level, from tiniest distances to cosmological extents, that are intractable with classical computers but may benefit from quantum advantage. They have initiated, and continue to carry out, a vigorous program in theory, algorithm, and hardware co-design for simulations of relevance to the HEP mission. This community whitepaper is an attempt to bring this exciting and yet challenging area of research to the spotlight, and to elaborate on what the promises, requirements, challenges, and potential solutions are over the next decade and beyond.
△ Less
Submitted 7 April, 2022;
originally announced April 2022.
-
Neutrinoless Double-Beta Decay: A Roadmap for Matching Theory to Experiment
Authors:
Vincenzo Cirigliano,
Zohreh Davoudi,
Wouter Dekens,
Jordy de Vries,
Jonathan Engel,
Xu Feng,
Julia Gehrlein,
Michael L. Graesser,
Lukáš Gráf,
Heiko Hergert,
Luchang Jin,
Emanuele Mereghetti,
Amy Nicholson,
Saori Pastore,
Michael J. Ramsey-Musolf,
Richard Ruiz,
Martin Spinrath,
Ubirajara van Kolck,
André Walker-Loud
Abstract:
The observation of neutrino oscillations and hence non-zero neutrino masses provided a milestone in the search for physics beyond the Standard Model. But even though we now know that neutrinos are massive, the nature of neutrino masses, i.e., whether they are Dirac or Majorana, remains an open question. A smoking-gun signature of Majorana neutrinos is the observation of neutrinoless double-beta de…
▽ More
The observation of neutrino oscillations and hence non-zero neutrino masses provided a milestone in the search for physics beyond the Standard Model. But even though we now know that neutrinos are massive, the nature of neutrino masses, i.e., whether they are Dirac or Majorana, remains an open question. A smoking-gun signature of Majorana neutrinos is the observation of neutrinoless double-beta decay, a process that violates the lepton-number conservation of the Standard Model. This white paper focuses on the theoretical aspects of the neutrinoless double-beta decay program and lays out a roadmap for future developments. The roadmap is a multi-scale path starting from high-energy models of neutrinoless double-beta decay all the way to the low-energy nuclear many-body problem that needs to be solved to supplement measurements of the decay rate. The path goes through a systematic effective-field-theory description of the underlying processes at various scales and needs to be supplemented by lattice quantum chromodynamics input. The white paper also discusses the interplay between neutrinoless double-beta decay, experiments at the Large Hadron Collider and results from astrophysics and cosmology in probing simplified models of lepton-number violation at the TeV scale, and the generation of the matter-antimatter asymmetry via leptogenesis. This white paper is prepared for the topical groups TF11 (Theory of Neutrino Physics), TF05 (Lattice Gauge Theory), RF04 (Baryon and Lepton Number Violating Processes), NF03 (Beyond the Standard Model) and NF05 (Neutrino Properties) within the Theory Frontier, Rare Processes and Precision Frontier, and Neutrino Physics Frontier of the U.S. Community Study on the Future of Particle Physics (Snowmass 2021).
△ Less
Submitted 22 March, 2022;
originally announced March 2022.
-
Theoretical tools for neutrino scattering: interplay between lattice QCD, EFTs, nuclear physics, phenomenology, and neutrino event generators
Authors:
L. Alvarez Ruso,
A. M. Ankowski,
S. Bacca,
A. B. Balantekin,
J. Carlson,
S. Gardiner,
R. Gonzalez-Jimenez,
R. Gupta,
T. J. Hobbs,
M. Hoferichter,
J. Isaacson,
N. Jachowicz,
W. I. Jay,
T. Katori,
F. Kling,
A. S. Kronfeld,
S. W. Li,
H. -W. Lin,
K. -F. Liu,
A. Lovato,
K. Mahn,
J. Menendez,
A. S. Meyer,
J. Morfin,
S. Pastore
, et al. (36 additional authors not shown)
Abstract:
Maximizing the discovery potential of increasingly precise neutrino experiments will require an improved theoretical understanding of neutrino-nucleus cross sections over a wide range of energies. Low-energy interactions are needed to reconstruct the energies of astrophysical neutrinos from supernovae bursts and search for new physics using increasingly precise measurement of coherent elastic neut…
▽ More
Maximizing the discovery potential of increasingly precise neutrino experiments will require an improved theoretical understanding of neutrino-nucleus cross sections over a wide range of energies. Low-energy interactions are needed to reconstruct the energies of astrophysical neutrinos from supernovae bursts and search for new physics using increasingly precise measurement of coherent elastic neutrino scattering. Higher-energy interactions involve a variety of reaction mechanisms including quasi-elastic scattering, resonance production, and deep inelastic scattering that must all be included to reliably predict cross sections for energies relevant to DUNE and other accelerator neutrino experiments. This white paper discusses the theoretical status, challenges, required resources, and path forward for achieving precise predictions of neutrino-nucleus scattering and emphasizes the need for a coordinated theoretical effort involved lattice QCD, nuclear effective theories, phenomenological models of the transition region, and event generators.
△ Less
Submitted 20 April, 2022; v1 submitted 16 March, 2022;
originally announced March 2022.
-
Nuclear Forces for Precision Nuclear Physics -- a collection of perspectives
Authors:
Ingo Tews,
Zohreh Davoudi,
Andreas Ekström,
Jason D. Holt,
Kevin Becker,
Raúl Briceño,
David J. Dean,
William Detmold,
Christian Drischler,
Thomas Duguet,
Evgeny Epelbaum,
Ashot Gasparyan,
Jambul Gegelia,
Jeremy R. Green,
Harald W. Grießhammer,
Andrew D. Hanlon,
Matthias Heinz,
Heiko Hergert,
Martin Hoferichter,
Marc Illa,
David Kekejian,
Alejandro Kievsky,
Sebastian König,
Hermann Krebs,
Kristina D. Launey
, et al. (20 additional authors not shown)
Abstract:
This is a collection of perspective pieces contributed by the participants of the Institute of Nuclear Theory's Program on Nuclear Physics for Precision Nuclear Physics which was held virtually from April 19 to May 7, 2021. The collection represents the reflections of a vibrant and engaged community of researchers on the status of theoretical research in low-energy nuclear physics, the challenges…
▽ More
This is a collection of perspective pieces contributed by the participants of the Institute of Nuclear Theory's Program on Nuclear Physics for Precision Nuclear Physics which was held virtually from April 19 to May 7, 2021. The collection represents the reflections of a vibrant and engaged community of researchers on the status of theoretical research in low-energy nuclear physics, the challenges ahead, and new ideas and strategies to make progress in nuclear structure and reaction physics, effective field theory, lattice QCD, quantum information, and quantum computing. The contributed pieces solely reflect the perspectives of the respective authors and do not represent the viewpoints of the Institute for Nuclear theory or the organizers of the program.
△ Less
Submitted 2 February, 2022;
originally announced February 2022.
-
Digital Quantum Simulation of the Schwinger Model and Symmetry Protection with Trapped Ions
Authors:
Nhung H. Nguyen,
Minh C. Tran,
Yingyue Zhu,
Alaina M. Green,
C. Huerta Alderete,
Zohreh Davoudi,
Norbert M. Linke
Abstract:
Tracking the dynamics of physical systems in real time is a prime application of digital quantum computers. Using a trapped-ion system with up to six qubits, we simulate the real-time dynamics of a lattice gauge theory in 1+1 dimensions, i.e., the lattice Schwinger model, and demonstrate non-perturbative effects such as pair creation for times much longer than previously accessible. We study the g…
▽ More
Tracking the dynamics of physical systems in real time is a prime application of digital quantum computers. Using a trapped-ion system with up to six qubits, we simulate the real-time dynamics of a lattice gauge theory in 1+1 dimensions, i.e., the lattice Schwinger model, and demonstrate non-perturbative effects such as pair creation for times much longer than previously accessible. We study the gate requirement of two formulations of the model using the Suzuki-Trotter product formula, as well as the trade-off between errors from the ordering of the Hamiltonian terms, the Trotter step size, and experimental imperfections. To mitigate experimental errors, a recent symmetry-protection protocol for suppressing coherent errors and a symmetry-inspired post-selection scheme are applied. This work demonstrates the integrated theoretical, algorithmic, and experimental approach that is essential for efficient simulation of lattice gauge theories and other complex physical systems.
△ Less
Submitted 12 April, 2022; v1 submitted 28 December, 2021;
originally announced December 2021.
-
On the Extraction of Low-energy Constants of Single- and Double-$β$ Decays from Lattice QCD: A Sensitivity Analysis
Authors:
Zohreh Davoudi,
Saurabh V. Kadam
Abstract:
Lattice quantum chromodynamics (LQCD) has the promise of constraining low-energy constants (LECs) of nuclear effective field theories (EFTs) from first-principles calculations that incorporate the dynamics of quarks and gluons. Given the Euclidean and finite-volume nature of LQCD outputs, complex mappings are developed in recent years to obtain the Minkowski and infinite-volume counterparts of LQC…
▽ More
Lattice quantum chromodynamics (LQCD) has the promise of constraining low-energy constants (LECs) of nuclear effective field theories (EFTs) from first-principles calculations that incorporate the dynamics of quarks and gluons. Given the Euclidean and finite-volume nature of LQCD outputs, complex mappings are developed in recent years to obtain the Minkowski and infinite-volume counterparts of LQCD observables. In particular, as LQCD is moving toward computing a set of important few-nucleon matrix elements at the physical values of the quark masses, it is important to investigate whether the anticipated precision of LQCD spectra and matrix elements will be sufficient to guarantee tighter constraints on the relevant LECs than those already obtained from phenomenology, considering the non-trivial mappings involved. With a focus on the leading-order LECs of the pionless EFT, $L_{1,A}$ and $g_ν^{NN}$, which parametrize, respectively, the strength of the isovector axial two-body current in a single-$β$ decay (and other related processes such $pp$ fusion), and of the isotensor contact two-body operator in the neutrinoless double-$β$ decay within the light neutrino exchange scenario, the expected uncertainty on future extractions of $L_{1,A}$ and $g_ν^{NN}$ are examined using synthetic data at the physical values of the quark masses. It is observed that achieving small uncertainties in $L_{1,A}$ will be challenging, and (sub)percent-level precision in the two-nucleon spectra and matrix elements is essential in reducing the uncertainty on this LEC compared to the existing constraints. On the other hand, the short-distance coupling of the neutrinoless double-$β$ decay, $g_ν^{NN}$, is shown to be less sensitive to uncertainties on both LQCD energies and the matrix element, and can likely be constrained with percent-level precision in the upcoming LQCD calculations.
△ Less
Submitted 22 November, 2021;
originally announced November 2021.
-
A variational study of two-nucleon systems with lattice QCD
Authors:
Saman Amarasinghe,
Riyadh Baghdadi,
Zohreh Davoudi,
William Detmold,
Marc Illa,
Assumpta Parreno,
Andrew V. Pochinsky,
Phiala E. Shanahan,
Michael L. Wagman
Abstract:
The low-energy spectrum and scattering of two-nucleon systems are studied with lattice quantum chromodynamics using a variational approach. A wide range of interpolating operators are used: dibaryon operators built from products of plane-wave nucleons, hexaquark operators built from six localized quarks, and quasi-local operators inspired by two-nucleon bound-state wavefunctions in low-energy effe…
▽ More
The low-energy spectrum and scattering of two-nucleon systems are studied with lattice quantum chromodynamics using a variational approach. A wide range of interpolating operators are used: dibaryon operators built from products of plane-wave nucleons, hexaquark operators built from six localized quarks, and quasi-local operators inspired by two-nucleon bound-state wavefunctions in low-energy effective theories. Sparsening techniques are used to compute the timeslice-to-all quark propagators required to form correlation-function matrices using products of these operators. Projection of these matrices onto irreducible representations of the cubic group, including spin-orbit coupling, is detailed. Variational methods are applied to constrain the low-energy spectra of two-nucleon systems in a single finite volume with quark masses corresponding to a pion mass of 806 MeV. Results for S- and D-wave phase shifts in the isospin singlet and triplet channels are obtained under the assumption that partial-wave mixing is negligible. Tests of interpolating-operator dependence are used to investigate the reliability of the energy spectra obtained and highlight both the strengths and weaknesses of variational methods. These studies and comparisons to previous studies using the same gauge-field ensemble demonstrate that interpolating-operator dependence can lead to significant effects on the two-nucleon energy spectra obtained using both variational and non-variational methods, including missing energy levels and other discrepancies. While this study is inconclusive regarding the presence of two-nucleon bound states at this quark mass, it provides robust upper bounds on two-nucleon energy levels that can be improved in future calculations using additional interpolating operators and is therefore a step toward reliable nuclear spectroscopy from the underlying Standard Model of particle physics.
△ Less
Submitted 1 October, 2024; v1 submitted 24 August, 2021;
originally announced August 2021.
-
Engineering an Effective Three-spin Hamiltonian in Trapped-ion Systems for Applications in Quantum Simulation
Authors:
Bárbara Andrade,
Zohreh Davoudi,
Tobias Graß,
Mohammad Hafezi,
Guido Pagano,
Alireza Seif
Abstract:
Trapped-ion quantum simulators, in analog and digital modes, are considered a primary candidate to achieve quantum advantage in quantum simulation and quantum computation. The underlying controlled ion-laser interactions induce all-to-all two-spin interactions via the collective modes of motion through Cirac-Zoller or Molmer-Sorensen schemes, leading to effective two-spin Hamiltonians, as well as…
▽ More
Trapped-ion quantum simulators, in analog and digital modes, are considered a primary candidate to achieve quantum advantage in quantum simulation and quantum computation. The underlying controlled ion-laser interactions induce all-to-all two-spin interactions via the collective modes of motion through Cirac-Zoller or Molmer-Sorensen schemes, leading to effective two-spin Hamiltonians, as well as two-qubit entangling gates. In this work, the Molmer-Sorensen scheme is extended to induce three-spin interactions via tailored first- and second-order spin-motion couplings. The scheme enables engineering single-, two-, and three-spin interactions, and can be tuned via an enhanced protocol to simulate purely three-spin dynamics. Analytical results for the effective evolution are presented, along with detailed numerical simulations of the full dynamics to support the accuracy and feasibility of the proposed scheme for near-term applications. With a focus on quantum simulation, the advantage of a direct analog implementation of three-spin dynamics is demonstrated via the example of matter-gauge interactions in the U(1) lattice gauge theory within the quantum link model. The mapping of degrees of freedom and strategies for scaling the three-spin scheme to larger systems, are detailed, along with a discussion of the expected outcome of the simulation of the quantum link model given realistic fidelities in the upcoming experiments. The applications of the three-spin scheme go beyond the lattice gauge theory example studied here and include studies of static and dynamical phase diagrams of strongly interacting condensed-matter systems modeled by two- and three-spin Hamiltonians.
△ Less
Submitted 2 August, 2021;
originally announced August 2021.
-
Toward simulating quantum field theories with controlled phonon-ion dynamics: A hybrid analog-digital approach
Authors:
Zohreh Davoudi,
Norbert M. Linke,
Guido Pagano
Abstract:
Quantum field theories are the cornerstones of modern physics, providing relativistic and quantum mechanical descriptions of physical systems at the most fundamental level. Simulating real-time dynamics within these theories remains elusive in classical computing. This provides a unique opportunity for quantum simulators, which hold the promise of revolutionizing our simulation capabilities. Trapp…
▽ More
Quantum field theories are the cornerstones of modern physics, providing relativistic and quantum mechanical descriptions of physical systems at the most fundamental level. Simulating real-time dynamics within these theories remains elusive in classical computing. This provides a unique opportunity for quantum simulators, which hold the promise of revolutionizing our simulation capabilities. Trapped-ion systems are successful quantum-simulator platforms for quantum many-body physics and can operate in digital, or gate-based, and analog modes. Inspired by the progress in proposing and realizing quantum simulations of a number of relativistic quantum field theories using trapped-ion systems, and by the hybrid analog-digital proposals for simulating interacting boson-fermion models, we propose hybrid analog-digital quantum simulations of selected quantum field theories, taking recent developments to the next level. On one hand, the semi-digital nature of this proposal offers more flexibility in engineering generic model interactions compared with a fully-analog approach. On the other hand, encoding the bosonic fields onto the phonon degrees of freedom of the trapped-ion system allows a more efficient usage of simulator resources, and a more natural implementation of intrinsic quantum operations in such platforms. This opens up new ways for simulating complex dynamics of e.g., Abelian and non-Abelian gauge theories, by combining the benefits of digital and analog schemes.
△ Less
Submitted 19 April, 2021;
originally announced April 2021.
-
The path from lattice QCD to the short-distance contribution to $0νββ$ decay with a light Majorana neutrino
Authors:
Zohreh Davoudi,
Saurabh V. Kadam
Abstract:
Neutrinoless double-$β$ ($0νββ$) decay of certain atomic isotopes, if observed, will have significant implications for physics of neutrinos and models of physics beyond the Standard Model. In the simplest scenario, if the mass of the light neutrino of the Standard Model has a Majorana component, it can mediate the decay. Systematic theoretical studies of the decay rate in this scenario, through ef…
▽ More
Neutrinoless double-$β$ ($0νββ$) decay of certain atomic isotopes, if observed, will have significant implications for physics of neutrinos and models of physics beyond the Standard Model. In the simplest scenario, if the mass of the light neutrino of the Standard Model has a Majorana component, it can mediate the decay. Systematic theoretical studies of the decay rate in this scenario, through effective field theories matched to \emph{ab initio} nuclear many-body calculations, are needed to draw conclusions about the hierarchy of neutrino masses, and to plan the design of future experiments. However, a recently identified short-distance contribution at leading order in the effective field theory amplitude of the subprocess $nn \to pp\,(ee)$ remains unknown, and only lattice quantum chromodynamics (QCD) can directly and reliably determine the associated low-energy constant. While the numerical computations of the correlation function for this process are underway with lattice QCD, the connection to the physical amplitude, and hence this short-distance contribution, is missing. A complete framework that enables this complex matching is developed in this paper. The complications arising from Euclidean and finite-volume nature of the corresponding correlation function are fully resolved, and the value of the formalism is demonstrated through a simple example. The result of this work, therefore, fills the gap between first-principle studies of the $nn \to pp\,(ee)$ amplitude from lattice QCD and those from effective field theory, and can be readily employed in the ongoing lattice-QCD studies of this process.
△ Less
Submitted 19 April, 2021; v1 submitted 3 December, 2020;
originally announced December 2020.
-
Low-energy Scattering and Effective Interactions of Two Baryons at $m_π\sim 450$ MeV from Lattice Quantum Chromodynamics
Authors:
Marc Illa,
Silas R. Beane,
Emmanuel Chang,
Zohreh Davoudi,
William Detmold,
David J. Murphy,
Kostas Orginos,
Assumpta Parreño,
Martin J. Savage,
Phiala E. Shanahan,
Michael L. Wagman,
Frank Winter
Abstract:
The interactions between two octet baryons are studied at low energies using lattice QCD (LQCD) with larger-than-physical quark masses corresponding to a pion mass of $m_π\sim 450$ MeV and a kaon mass of $m_{K}\sim 596$ MeV. The two-baryon systems that are analyzed range from strangeness $S=0$ to $S=-4$ and include the spin-singlet and triplet $NN$, $ΣN$ ($I=3/2$), and $ΞΞ$ states, the spin-single…
▽ More
The interactions between two octet baryons are studied at low energies using lattice QCD (LQCD) with larger-than-physical quark masses corresponding to a pion mass of $m_π\sim 450$ MeV and a kaon mass of $m_{K}\sim 596$ MeV. The two-baryon systems that are analyzed range from strangeness $S=0$ to $S=-4$ and include the spin-singlet and triplet $NN$, $ΣN$ ($I=3/2$), and $ΞΞ$ states, the spin-singlet $ΣΣ$ ($I=2$) and $ΞΣ$ ($I=3/2$) states, and the spin-triplet $ΞN$ ($I=0$) state. The $s$-wave scattering phase shifts, low-energy scattering parameters, and binding energies when applicable, are extracted using Lüscher's formalism. While the results are consistent with most of the systems being bound at this pion mass, the interactions in the spin-triplet $ΣN$ and $ΞΞ$ channels are found to be repulsive and do not support bound states. Using results from previous studies at a larger pion mass, an extrapolation of the binding energies to the physical point is performed and is compared with experimental values and phenomenological predictions. The low-energy coefficients in pionless EFT relevant for two-baryon interactions, including those responsible for $SU(3)$ flavor-symmetry breaking, are constrained. The $SU(3)$ symmetry is observed to hold approximately at the chosen values of the quark masses, as well as the $SU(6)$ spin-flavor symmetry, predicted at large $N_c$. A remnant of an accidental $SU(16)$ symmetry found previously at a larger pion mass is further observed. The $SU(6)$-symmetric EFT constrained by these LQCD calculations is used to make predictions for two-baryon systems for which the low-energy scattering parameters could not be determined with LQCD directly in this study, and to constrain the coefficients of all leading $SU(3)$ flavor-symmetric interactions, demonstrating the predictive power of two-baryon EFTs matched to LQCD.
△ Less
Submitted 23 March, 2021; v1 submitted 25 September, 2020;
originally announced September 2020.
-
Search for Efficient Formulations for Hamiltonian Simulation of non-Abelian Lattice Gauge Theories
Authors:
Zohreh Davoudi,
Indrakshi Raychowdhury,
Andrew Shaw
Abstract:
Hamiltonian formulation of lattice gauge theories (LGTs) is the most natural framework for the purpose of quantum simulation, an area of research that is growing with advances in quantum-computing algorithms and hardware. It, therefore, remains an important task to identify the most accurate, while computationally economic, Hamiltonian formulation(s) in such theories, considering the necessary tru…
▽ More
Hamiltonian formulation of lattice gauge theories (LGTs) is the most natural framework for the purpose of quantum simulation, an area of research that is growing with advances in quantum-computing algorithms and hardware. It, therefore, remains an important task to identify the most accurate, while computationally economic, Hamiltonian formulation(s) in such theories, considering the necessary truncation imposed on the Hilbert space of gauge bosons with any finite computing resources. This paper is a first step toward addressing this question in the case of non-Abelian LGTs, which further require the imposition of non-Abelian Gauss's laws on the Hilbert space, introducing additional computational complexity. Focusing on the case of SU(2) LGT in 1+1 D coupled to matter, a number of different formulations of the original Kogut-Susskind framework are analyzed with regard to the dependence of the dimension of the physical Hilbert space on boundary conditions, system's size, and the cutoff on the excitations of gauge bosons. The impact of such dependencies on the accuracy of the spectrum and dynamics is examined, and the (classical) computational-resource requirements given these considerations are studied. Besides the well-known angular-momentum formulation of the theory, the cases of purely fermionic and purely bosonic formulations (with open boundary conditions), and the Loop-String-Hadron formulation are analyzed, along with a brief discussion of a Quantum Link Model of the same theory. Clear advantages are found in working with the Loop-String-Hadron framework which implements non-Abelian Gauss's laws a priori using a complete set of gauge-invariant operators. Although small lattices are studied in the numerical analysis of this work, and only the simplest algorithms are considered, a range of conclusions will be applicable to larger systems and potentially to higher dimensions.
△ Less
Submitted 24 September, 2020;
originally announced September 2020.
-
Nuclear matrix elements from lattice QCD for electroweak and beyond-Standard-Model processes
Authors:
Zohreh Davoudi,
William Detmold,
Kostas Orginos,
Assumpta Parreño,
Martin J. Savage,
Phiala Shanahan,
Michael L. Wagman
Abstract:
Over the last decade, numerical solutions of Quantum Chromodynamics (QCD) using the technique of lattice QCD have developed to a point where they are beginning to connect fundamental aspects of nuclear physics to the underlying degrees of freedom of the Standard Model. In this review, the progress of lattice QCD studies of nuclear matrix elements of electroweak currents and beyond-Standard-Model o…
▽ More
Over the last decade, numerical solutions of Quantum Chromodynamics (QCD) using the technique of lattice QCD have developed to a point where they are beginning to connect fundamental aspects of nuclear physics to the underlying degrees of freedom of the Standard Model. In this review, the progress of lattice QCD studies of nuclear matrix elements of electroweak currents and beyond-Standard-Model operators is summarized, and connections with effective field theories and nuclear models are outlined.
Lattice QCD calculations of nuclear matrix elements can provide guidance for low-energy nuclear reactions in astrophysics, dark matter direct detection experiments, and experimental searches for violations of the symmetries of the Standard Model, including searches for additional CP violation in the hadronic and leptonic sectors, baryon-number violation, and lepton-number or flavor violation. Similarly, important inputs to neutrino experiments seeking to determine the neutrino-mass hierarchy and oscillation parameters, as well as other electroweak and beyond-Standard-Model processes can be determined. The phenomenological implications of existing studies of electroweak and beyond-Standard-Model matrix elements in light nuclear systems are discussed, and future prospects for the field toward precision studies of these matrix elements are outlined.
△ Less
Submitted 25 August, 2020;
originally announced August 2020.
-
Two-neutrino double-beta decay in pionless effective field theory from a Euclidean finite-volume correlation function
Authors:
Zohreh Davoudi,
Saurabh V. Kadam
Abstract:
Two-neutrino double-beta decay of certain nuclear isotopes is one of the rarest Standard Model processes observed in nature. Its neutrinoless counterpart is an exotic lepton-number nonconserving process that is widely searched for to determine if the neutrinos are Majorana fermions. In order to connect the rate of these processes to the Standard Model and beyond the Standard Model interactions, it…
▽ More
Two-neutrino double-beta decay of certain nuclear isotopes is one of the rarest Standard Model processes observed in nature. Its neutrinoless counterpart is an exotic lepton-number nonconserving process that is widely searched for to determine if the neutrinos are Majorana fermions. In order to connect the rate of these processes to the Standard Model and beyond the Standard Model interactions, it is essential that the corresponding nuclear matrix elements are constrained reliably from theory. Lattice quantum chromodynamics (LQCD) and low-energy effective field theories (EFTs) are expected to play an essential role in constraining the matrix element of the two-nucleon subprocess, which could in turn provide the input into ab initio nuclear-structure calculations in larger isotopes. Focusing on the two-neutrino process $nn \to pp \, (ee \barν_e\barν_e)$, the amplitude is constructed in this work in pionless EFT at next-to-leading order, demonstrating the emergence of a renormalization-scale independent amplitude and the absence of any new low-energy constant at this order beyond those present in the single-weak process. Most importantly, it is shown how a LQCD four-point correlation function in Euclidean and finite-volume spacetime can be used to constrain the Minkowski infinite-volume amplitude in the EFT. The same formalism is provided for the related single-weak process, which is an input to the double-$β$ decay formalism. The LQCD-EFT matching procedure outlined for the double-weak amplitude paves the road toward constraining the two-nucleon matrix element entering the neutrinoless double-beta decay amplitude with a light Majorana neutrino.
△ Less
Submitted 29 December, 2020; v1 submitted 30 July, 2020;
originally announced July 2020.
-
New Ideas in Constraining Nuclear Forces
Authors:
I. Tews,
Z. Davoudi,
A. Ekström,
J. D. Holt,
J. E. Lynn
Abstract:
In recent years, nuclear physics has benefited greatly from the development of powerful ab initio many-body methods and their combination with interactions from chiral effective field theory. With increasing computational power and continuous development of these methods, we are entering an era of precision nuclear physics. Indeed, uncertainties from nuclear Hamiltonians now dominate over uncertai…
▽ More
In recent years, nuclear physics has benefited greatly from the development of powerful ab initio many-body methods and their combination with interactions from chiral effective field theory. With increasing computational power and continuous development of these methods, we are entering an era of precision nuclear physics. Indeed, uncertainties from nuclear Hamiltonians now dominate over uncertainties from many-body methods. This review summarizes the current status of, and future directions in, deriving and constraining nuclear Hamiltonians.
△ Less
Submitted 16 August, 2020; v1 submitted 10 January, 2020;
originally announced January 2020.
-
Long-range electroweak amplitudes of single hadrons from Euclidean finite-volume correlation functions
Authors:
Raúl A. Briceño,
Zohreh Davoudi,
Maxwell T. Hansen,
Matthias R. Schindler,
Alessandro Baroni
Abstract:
A relation is presented between single-hadron long-range matrix elements defined in a finite Euclidean spacetime, and the corresponding infinite-volume Minkowski amplitudes. This relation is valid in the kinematic region where any number of two-hadron states can simultaneously go on shell, so that the effects of strongly-coupled intermediate channels are included. These channels can consist of non…
▽ More
A relation is presented between single-hadron long-range matrix elements defined in a finite Euclidean spacetime, and the corresponding infinite-volume Minkowski amplitudes. This relation is valid in the kinematic region where any number of two-hadron states can simultaneously go on shell, so that the effects of strongly-coupled intermediate channels are included. These channels can consist of non-identical particles with arbitrary intrinsic spins. The result accommodates general Lorentz structures as well as non-zero momentum transfer for the two external currents inserted between the single-hadron states. The formalism, therefore, generalizes the work by Christ et al.~[Phys.Rev. D91 114510 (2015)], and extends the reach of lattice quantum chromodynamics (QCD) to a wide class of new observables beyond meson mixing and rare decays. Applications include Compton scattering of the pion ($πγ^\star \to [ππ, K \overline K] \to πγ^\star$), kaon ($K γ^\star \to [πK, ηK] \to K γ^\star$) and nucleon ($N γ^\star \to N π\to N γ^\star$), as well as double-$β$ decays, and radiative corrections to the single-$β$ decay, of QCD-stable hadrons. The framework presented will further facilitate generalization of the result to studies of nuclear amplitudes involving two currents from lattice QCD.
△ Less
Submitted 10 November, 2019;
originally announced November 2019.
-
Towards analog quantum simulations of lattice gauge theories with trapped ions
Authors:
Zohreh Davoudi,
Mohammad Hafezi,
Christopher Monroe,
Guido Pagano,
Alireza Seif,
Andrew Shaw
Abstract:
Gauge field theories play a central role in modern physics and are at the heart of the Standard Model of elementary particles and interactions. Despite significant progress in applying classical computational techniques to simulate gauge theories, it has remained a challenging task to compute the real-time dynamics of systems described by gauge theories. An exciting possibility that has been explo…
▽ More
Gauge field theories play a central role in modern physics and are at the heart of the Standard Model of elementary particles and interactions. Despite significant progress in applying classical computational techniques to simulate gauge theories, it has remained a challenging task to compute the real-time dynamics of systems described by gauge theories. An exciting possibility that has been explored in recent years is the use of highly-controlled quantum systems to simulate, in an analog fashion, properties of a target system whose dynamics are difficult to compute. Engineered atom-laser interactions in a linear crystal of trapped ions offer a wide range of possibilities for quantum simulations of complex physical systems. Here, we devise practical proposals for analog simulation of simple lattice gauge theories whose dynamics can be mapped onto spin-spin interactions in any dimension. These include 1+1D quantum electrodynamics, 2+1D Abelian Chern-Simons theory coupled to fermions, and 2+1D pure Z2 gauge theory. The scheme proposed, along with the optimization protocol applied, will have applications beyond the examples presented in this work, and will enable scalable analog quantum simulation of Heisenberg spin models in any number of dimensions and with arbitrary interaction strengths.
△ Less
Submitted 8 August, 2019;
originally announced August 2019.
-
The Role of Lattice QCD in Searches for Violations of Fundamental Symmetries and Signals for New Physics
Authors:
Vincenzo Cirigliano,
Zohreh Davoudi,
Tanmoy Bhattacharya,
Taku Izubuchi,
Phiala E. Shanahan,
Sergey Syritsyn,
Michael L. Wagman
Abstract:
This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for Lattice Quantum Chromodynamics (LQCD) in the research frontier in fundamental symmetries and signals for new physics. LQCD, in synergy with effective field theories and nuclear many-body studies, provides theoretical support to ongoing and planned experimental programs in searches for e…
▽ More
This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for Lattice Quantum Chromodynamics (LQCD) in the research frontier in fundamental symmetries and signals for new physics. LQCD, in synergy with effective field theories and nuclear many-body studies, provides theoretical support to ongoing and planned experimental programs in searches for electric dipole moments of the nucleon, nuclei and atoms, decay of the proton, $n$-$\overline{n}$ oscillations, neutrinoless double-$β$ decay of a nucleus, conversion of muon to electron, precision measurements of weak decays of the nucleon and of nuclei, precision isotope-shift spectroscopy, as well as direct dark matter detection experiments using nuclear targets. This whitepaper details the objectives of the LQCD program in the area of Fundamental Symmetries within the USQCD collaboration, identifies priorities that can be addressed within the next five years, and elaborates on the areas that will likely demand a high degree of innovation in both numerical and analytical frontiers of the LQCD research.
△ Less
Submitted 21 April, 2019;
originally announced April 2019.
-
Light Nuclei from Lattice QCD: Spectrum, Structure and Reactions
Authors:
Zohreh Davoudi
Abstract:
Lattice Quantum Chromodynamics (LQCD) studies of light nuclei have entered an era when first results on structure and reaction properties of light nuclei have emerged in recent years, complementing existing results on their lowest-lying spectra. Although in these preliminary studies the quark masses are still set to larger than the physical values, a few results at the physical point can still be…
▽ More
Lattice Quantum Chromodynamics (LQCD) studies of light nuclei have entered an era when first results on structure and reaction properties of light nuclei have emerged in recent years, complementing existing results on their lowest-lying spectra. Although in these preliminary studies the quark masses are still set to larger than the physical values, a few results at the physical point can still be deduced from simple extrapolations in the quark masses. The progress paves the road towards obtaining several important quantities in nuclear physics, such as nuclear forces and nuclear matrix elements relevant for pp fusion, single and double-beta decay processes, neutrino-nucleus scattering, searches for CP violation, nuclear response in direct dark-matter detection experiments, as well as gluonic structure of nuclei for an Electron-Ion Collider (EIC) program. Some of the recent developments, the results obtained, and the outlook of the field will be briefly reviewed in this talk, with a focus on results obtained by the Nuclear Physics From LQCD (NPLQCD) collaboration.
△ Less
Submitted 12 February, 2019;
originally announced February 2019.
-
The path from finite to infinite volume: Hadronic observables from lattice QCD
Authors:
Zohreh Davoudi
Abstract:
Standard Model determinations of properties of strongly interacting systems of hadrons have become possible with the powerful method of lattice quantum chromodynamics (LQCD), a method with growing applicability and reliability. While growth in computational power and innovations in algorithmic and computational approaches have been essential in advancing the state of the field, conceptual and form…
▽ More
Standard Model determinations of properties of strongly interacting systems of hadrons have become possible with the powerful method of lattice quantum chromodynamics (LQCD), a method with growing applicability and reliability. While growth in computational power and innovations in algorithmic and computational approaches have been essential in advancing the state of the field, conceptual and formal developments have played a crucial role in turning the output of LQCD computations to phenomenologically valuable results. From the invention of finite-volume technology to access physical observables by Martin Lüscher over three decades ago to date, this field has grown in scope and complexity, enabling studies of scattering amplitudes and reaction rates, as well as spectroscopy of excited states of quantum chromodynamics (QCD) and resonances. Further, LQCD studies are augmented with the inclusion of quantum electrodynamics (QED), and subtleties related to the finite volume of systems in presence of QED have been understood and largely controlled. In this talk, I focus on selected developments to give a taste of the status of the field concerning the mapping between the finite and infinite-volume physics and its state-of-the-art applications.
△ Less
Submitted 31 December, 2018;
originally announced December 2018.
-
QED-corrected Lellouch-Lüscher formula for $K \rightarrow ππ$ decay
Authors:
Yiming Cai,
Zohreh Davoudi
Abstract:
A precise SM prediction for the direct CP violation in the $K \rightarrow ππ$ decay process is of great importance in confronting experiments and constraining new physics. The state-of-art lattice QCD study of this process will soon achieve a precision that QED effects can no longer be neglected. The inclusion of QED in such calculations is planned, and the formalism to relate the finite-volume ma…
▽ More
A precise SM prediction for the direct CP violation in the $K \rightarrow ππ$ decay process is of great importance in confronting experiments and constraining new physics. The state-of-art lattice QCD study of this process will soon achieve a precision that QED effects can no longer be neglected. The inclusion of QED in such calculations is planned, and the formalism to relate the finite-volume matrix element obtained from these calculations to the physical amplitude is underway. Here, we report on the progress towards an extension of the Lellouch-Lüscher formalism in presence of QED, with the goal of enabling the extraction of physical amplitudes for the $K\rightarrow ππ$ process with charged initial and/or final states.
△ Less
Submitted 28 December, 2018;
originally announced December 2018.
-
Nuclear modification of scalar, axial and tensor charges from lattice QCD
Authors:
Emmanuel Chang,
Zohreh Davoudi,
William Detmold,
Arjun S. Gambhir,
Kostas Orginos,
Martin J. Savage,
Phiala E. Shanahan,
Michael L. Wagman,
Frank Winter
Abstract:
Complete flavour decompositions of the scalar, axial and tensor charges of the proton, deuteron, diproton and $^3$He at SU(3)-symmetric values of the quark masses corresponding to a pion mass $m_π\sim806$ MeV are determined using lattice QCD. At the physical quark masses, the scalar charges constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter c…
▽ More
Complete flavour decompositions of the scalar, axial and tensor charges of the proton, deuteron, diproton and $^3$He at SU(3)-symmetric values of the quark masses corresponding to a pion mass $m_π\sim806$ MeV are determined using lattice QCD. At the physical quark masses, the scalar charges constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor charges of nuclei constrain their spin content, integrated transversity and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. Significant nuclear modifications are found, with particularly large, O(10%), effects in the scalar charges. Typically, these nuclear effects reduce the effective charge of the nucleon (quenching), although in some cases an enhancement is not excluded. Given the size of the nuclear modifications of the scalar charges resolved here, contributions from correlated multi-nucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.
△ Less
Submitted 13 May, 2018; v1 submitted 8 December, 2017;
originally announced December 2017.
-
Lattice QCD input for nuclear structure and reactions
Authors:
Zohreh Davoudi
Abstract:
Explorations of the properties of light nuclear systems beyond their lowest-lying spectra have begun with Lattice Quantum Chromodynamics. While progress has been made in the past year in pursuing calculations with physical quark masses, studies of the simplest nuclear matrix elements and nuclear reactions at heavier quark masses have been conducted, and several interesting results have been obtain…
▽ More
Explorations of the properties of light nuclear systems beyond their lowest-lying spectra have begun with Lattice Quantum Chromodynamics. While progress has been made in the past year in pursuing calculations with physical quark masses, studies of the simplest nuclear matrix elements and nuclear reactions at heavier quark masses have been conducted, and several interesting results have been obtained. A community effort has been devoted to investigate the impact of such Quantum Chromodynamics input on the nuclear many-body calculations. Systems involving hyperons and their interactions have been the focus of intense investigations in the field, with new results and deeper insights emerging. While the validity of some of the previous multi-nucleon studies has been questioned during the past year, controversy remains as whether such concerns are relevant to a given result. In an effort to summarize the newest developments in the field, this talk will touch on most of these topics.
△ Less
Submitted 6 November, 2017;
originally announced November 2017.
-
Baryon-Baryon Interactions and Spin-Flavor Symmetry from Lattice Quantum Chromodynamics
Authors:
Michael L. Wagman,
Frank Winter,
Emmanuel Chang,
Zohreh Davoudi,
William Detmold,
Kostas Orginos,
Martin J. Savage,
Phiala E. Shanahan
Abstract:
Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass of $\approx 806~\tt{MeV}$). Specifically, the S-wave scattering phase shifts of two-baryon systems at low energies are obtained with t…
▽ More
Lattice quantum chromodynamics is used to constrain the interactions of two octet baryons at the SU(3) flavor-symmetric point, with quark masses that are heavier than those in nature (equal to that of the physical strange quark mass and corresponding to a pion mass of $\approx 806~\tt{MeV}$). Specifically, the S-wave scattering phase shifts of two-baryon systems at low energies are obtained with the application of Lüscher's formalism, mapping the energy eigenvalues of two interacting baryons in a finite volume to the two-particle scattering amplitudes below the relevant inelastic thresholds. The values of the leading-order low-energy scattering parameters in the irreducible representations of SU(3) are consistent with an approximate SU(6) spin-flavor symmetry in the nuclear and hypernuclear forces that is predicted in the large-$N_c$ limit of QCD. The two distinct SU(6)-invariant interactions between two baryons are constrained at this value of the quark masses, and their values indicate an approximate accidental SU(16) symmetry. The SU(3) irreducible representations containing the $NN~({^1}S_0)$, $NN~({^3}S_1)$ and $\frac{1}{\sqrt{2}}(Ξ^0n+Ξ^-p)~({^3}S_1)$ channels unambiguously exhibit a single bound state, while the irreducible representation containing the $Σ^+ p~({^3}S_1)$ channel exhibits a state that is consistent with either a bound state or a scattering state close to threshold. These results are in agreement with the previous conclusions of the NPLQCD collaboration regarding the existence of two-nucleon bound states at this value of the quark masses.
△ Less
Submitted 26 July, 2017; v1 submitted 20 June, 2017;
originally announced June 2017.