-
A Photon Cloud Induced from an Axion Cloud
Authors:
Zi-Yu Tang,
Eleftherios Papantonopoulos
Abstract:
It is known that the axion-photon coupling can lead to quantum stimulated emission of photons and classic exponential amplification of electromagnetic (EM) fields at half the axion mass frequency, when the axion density or the coupling constant is sufficiently large. In this work, we studied the EM photon cloud induced from an axion cloud around a Kerr black hole in the first order of the coupling…
▽ More
It is known that the axion-photon coupling can lead to quantum stimulated emission of photons and classic exponential amplification of electromagnetic (EM) fields at half the axion mass frequency, when the axion density or the coupling constant is sufficiently large. In this work, we studied the EM photon cloud induced from an axion cloud around a Kerr black hole in the first order of the coupling constant classically. In the presence of a static EM background (like Wald extended solution valid in realistic astrophysical environment), we found that an EM photon cloud emerges, oscillating at the same frequency as the axion cloud and growing exponentially in accordance with the axion cloud when the superradiant condition for the axion field is satisfied. The evolution of the EM photon cloud with time and azimuthal angle is obtained analytically while the cross-sectional distribution is solved numerically. The induced EM field exhibits significantly different symmetries in contrast to the background EM field, which may serve as an indication of the existence of both an axion cloud and axion-photon coupling.
△ Less
Submitted 29 October, 2025; v1 submitted 19 June, 2025;
originally announced June 2025.
-
Probing the Collision Geometry via Two-Photon Processes in Heavy-Ion Collisions
Authors:
Jiaxuan Luo,
Xinbai Li,
Zebo Tang,
Xin Wu,
Shuai Yang,
Wangmei Zha,
Zhan Zhang
Abstract:
The initial collision geometry, including the reaction plane, is crucial for interpreting collective phenomena in relativistic heavy-ion collisions, yet it remains experimentally inaccessible through conventional measurements. Recent studies propose utilizing photon-induced processes as a direct probe, leveraging the complete linear polarization of emitted photons whose orientation strongly correl…
▽ More
The initial collision geometry, including the reaction plane, is crucial for interpreting collective phenomena in relativistic heavy-ion collisions, yet it remains experimentally inaccessible through conventional measurements. Recent studies propose utilizing photon-induced processes as a direct probe, leveraging the complete linear polarization of emitted photons whose orientation strongly correlates with the collision geometry. In this work, we employ a QED-based approach to systematically investigate dilepton production via two-photon processes in heavy-ion collisions at RHIC and LHC energies and detector acceptances. Our calculations reveal that dilepton emission exhibits significant sensitivity to the initial collision geometry through both the azimuthal angles of their emission (defined by the relative momentum vector of the two leptons) and the overall momentum orientation of the dilepton pairs. These findings highlight the potential of two-photon-generated dileptons as a novel, polarization-driven probe to quantify the initial collision geometry and reduce uncertainties in characterizing quark-gluon plasma properties.
△ Less
Submitted 8 May, 2025;
originally announced May 2025.
-
Influence of the residual magnetic field on the azimuthal distribution of final-state particles in photon-nuclear processes
Authors:
Zhan Zhang,
Xin Wu,
Xinbai Li,
Wangmei Zha,
Zebo Tang
Abstract:
In relativistic heavy-ion collisions, charged particles are accelerated to nearly the speed of light, and their external electromagnetic fields can be effectively approximated as quasi-real photons. These photons interact with another nucleus via photon-nuclear interactions, producing vector mesons. These vector mesons possess extremely low transverse momentum (pT ~ 0.1 GeV/c), distinguishing them…
▽ More
In relativistic heavy-ion collisions, charged particles are accelerated to nearly the speed of light, and their external electromagnetic fields can be effectively approximated as quasi-real photons. These photons interact with another nucleus via photon-nuclear interactions, producing vector mesons. These vector mesons possess extremely low transverse momentum (pT ~ 0.1 GeV/c), distinguishing them from particles produced via hadronic interactions. STAR and ALICE have observed J/psi, rho0 and other vector mesons with very low pT, which are well described by photoproduction models. This unique characteristic of having extremely low transverse momentum allows them to serve as a novel experimental probe. Recent STAR results show that the equivalent photons in photoproduction processes are fully linearly polarized, affecting the azimuthal distribution of final-state particles like rho0 -> pi+ pi-. Since the polarization links to the initial collision geometry, the rho0 azimuthal modulation can probe nuclear structure. However, the post-collision magnetic field may deflect these particles, distorting the azimuthal distribution and complicating structure measurements. We simulated the distribution of residual magnetic fields over time under different collision conditions using UrQMD for Au+Au collisions at sqrt(sNN)=200 GeV and calculated their effects on the azimuthal modulation (<cos 2phi>) of photoproduced rho0. Our results show that in peripheral collisions, the field significantly alters the for photoproduced rho0 with pT ~ 0.1 GeV/c. This provides key insights for future nuclear structure studies via photoproduction in peripheral collisions.
△ Less
Submitted 24 June, 2025; v1 submitted 2 May, 2025;
originally announced May 2025.
-
Calculations of Di-Hadron Production via Two-Photon Processes in Relativistic Heavy-Ion Collisions
Authors:
Luobing Wang,
Xinbai Li,
Zebo Tang,
Xin Wu,
Wangmei Zha
Abstract:
Two-photon processes in relativistic heavy-ion collisions have emerged as a critical probe of quantum electrodynamics in ultra-intense electromagnetic fields, with recent focus extending beyond dileptons to hadronic final states. At present, quantitative studies of di-hadron production via two-photon interactions remain scarce. In this work, we employ the Equivalent Photon Approximation and the tw…
▽ More
Two-photon processes in relativistic heavy-ion collisions have emerged as a critical probe of quantum electrodynamics in ultra-intense electromagnetic fields, with recent focus extending beyond dileptons to hadronic final states. At present, quantitative studies of di-hadron production via two-photon interactions remain scarce. In this work, we employ the Equivalent Photon Approximation and the two-photon fusion measurements from \(e^{+}e^{-}\) collisions to obtain differential cross-section predictions for \(π^{+}π^{-}\), \(K^{+}K^{-}\), and \(p\bar{p}\) pairs produced in ultra-peripheral \(\mathrm{Au{+}Au}\) collisions at \(\sqrt{s_{NN}} = 200\,\text{GeV}\) within the STAR acceptance, as well as in \(\mathrm{Pb{+}Pb}\) collisions at \(\sqrt{s_{NN}} = 5.36\,\text{TeV}\) within typical LHC acceptance. The calculations deliver the unified baseline for light-meson and baryon pairs in this environment, supplying benchmarks for upcoming STAR and LHC measurements and guiding future systematic investigations of hadronic two-photon processes at RHIC and LHC facilities.
△ Less
Submitted 23 August, 2025; v1 submitted 2 May, 2025;
originally announced May 2025.
-
Ultra-high-energy $γ$-ray emission associated with the tail of a bow-shock pulsar wind nebula
Authors:
Zhen Cao,
F. Aharonian,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
W. Bian,
A. V. Bukevich,
C. M. Cai,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
H. X. Chen,
Liang Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. Chen,
S. H. Chen,
S. Z. Chen
, et al. (274 additional authors not shown)
Abstract:
In this study, we present a comprehensive analysis of an unidentified point-like ultra-high-energy (UHE) $γ$-ray source, designated as 1LHAASO J1740+0948u, situated in the vicinity of the middle-aged pulsar PSR J1740+1000. The detection significance reached 17.1$σ$ (9.4$σ$) above 25$\,$TeV (100$\,$TeV). The source energy spectrum extended up to 300$\,$TeV, which was well fitted by a log-parabola f…
▽ More
In this study, we present a comprehensive analysis of an unidentified point-like ultra-high-energy (UHE) $γ$-ray source, designated as 1LHAASO J1740+0948u, situated in the vicinity of the middle-aged pulsar PSR J1740+1000. The detection significance reached 17.1$σ$ (9.4$σ$) above 25$\,$TeV (100$\,$TeV). The source energy spectrum extended up to 300$\,$TeV, which was well fitted by a log-parabola function with $N0 = (1.93\pm0.23) \times 10^{-16} \rm{TeV^{-1}\,cm^{-2}\,s^{-2}}$, $α= 2.14\pm0.27$, and $β= 1.20\pm0.41$ at E0 = 30$\,$TeV. The associated pulsar, PSR J1740+1000, resides at a high galactic latitude and powers a bow-shock pulsar wind nebula (BSPWN) with an extended X-ray tail. The best-fit position of the gamma-ray source appeared to be shifted by $0.2^{\circ}$ with respect to the pulsar position. As the (i) currently identified pulsar halos do not demonstrate such offsets, and (ii) centroid of the gamma-ray emission is approximately located at the extension of the X-ray tail, we speculate that the UHE $γ$-ray emission may originate from re-accelerated electron/positron pairs that are advected away in the bow-shock tail.
△ Less
Submitted 24 February, 2025; v1 submitted 21 February, 2025;
originally announced February 2025.
-
Probing Gluon Shadowing in Heavy Nuclei through Bayesian Reweighting of J/$ψ$ Photoproduction in Ultra-Peripheral Collisions
Authors:
Pengzhong Lu,
Zebo Tang,
Xin Wu,
Wangmei Zha
Abstract:
The gluon distribution in nuclei plays a pivotal role in understanding quantum chromodynamics (QCD) under extreme nuclear environments, yet remains poorly constrained compared to quark distributions. Coherent \jpsi photoproduction in ultra-peripheral heavy-ion collisions ($γ+ A \rightarrow \mathrm{J}/ψ+ A$) provides a unique solution to this challenge, serving as a sensitive probe of nuclear gluon…
▽ More
The gluon distribution in nuclei plays a pivotal role in understanding quantum chromodynamics (QCD) under extreme nuclear environments, yet remains poorly constrained compared to quark distributions. Coherent \jpsi photoproduction in ultra-peripheral heavy-ion collisions ($γ+ A \rightarrow \mathrm{J}/ψ+ A$) provides a unique solution to this challenge, serving as a sensitive probe of nuclear gluon densities. In this study, we perform Bayesian reweighting on the EPPS21 and nCTEQ15 sets of nuclear parton distribution functions (nPDF) by incorporating coherent \jpsi photoproduction measurements from both RHIC and LHC. The Bayesian-reweighted gluon modification factors $\mathrm{R_g^{A}}(x, Q^2 = 2.4\ \mathrm{GeV}^2)$ reveal pronounced nuclear shadowing in the Pb nuclei, with $\mathrm{R_g^{\mathrm{Pb}}} \approx 0.60$ at $x = 10^{-4}$, while simultaneously achieving a great reduction of the uncertainties in the density of the gluon across the critical Bjorken-$x$ range $10^{-5} < x < 10^{-3}$ compared to initial predictions of the nPDF. This work establishes coherent \jpsi photoproduction as a precision tool for gluon nPDF extraction, overcoming traditional deep-inelastic scattering limitations through perturbative QCD-calibrated probes. The constrained nPDFs demonstrate improved consistency with the experimental data across collider energies, particularly in the shadowing-dominated regime.
△ Less
Submitted 13 February, 2025;
originally announced February 2025.
-
In-medium bottomonium properties from lattice NRQCD calculations with extended meson operators
Authors:
H. -T. Ding,
W. -P. Huang,
R. Larsen,
S. Meinel,
Swagato Mukherjee,
P. Petreczky,
Zhanduo Tang
Abstract:
We calculate the temperature dependence of bottomonium correlators in (2+1)-flavor lattice QCD with the aim to constrain in-medium properties of bottomonia at high temperature. The lattice calculations are performed using HISQ action with physical strange quark mass and light quark masses twenty times smaller than the strange quark mass at two lattice spacings $a=0.0493$ fm and $0.0602$ fm, and te…
▽ More
We calculate the temperature dependence of bottomonium correlators in (2+1)-flavor lattice QCD with the aim to constrain in-medium properties of bottomonia at high temperature. The lattice calculations are performed using HISQ action with physical strange quark mass and light quark masses twenty times smaller than the strange quark mass at two lattice spacings $a=0.0493$ fm and $0.0602$ fm, and temporal extents $N_τ=16-30$, corresponding to the temperatures $T=133-250$ MeV. We use a tadpole-improved NRQCD action including spin-dependent $v^6$ corrections for the heavy quarks and extended meson operators in order to be sensitive to in-medium properties of the bottomonium states of interest. We find that within estimated errors the bottomonium masses do not change compared to their vacuum values for all temperatures under our consideration; however, we find different nonzero widths for the various bottomonium states.
△ Less
Submitted 17 May, 2025; v1 submitted 19 January, 2025;
originally announced January 2025.
-
Probing a muonic force with the periastron advance in binary pulsar systems
Authors:
Zuowei Liu,
Zi-Wei Tang
Abstract:
Pulsars, highly magnetized, rotating neutron stars, can have significant muon abundances in their dense cores, making them promising environments to probe ultralight mediators coupled to muons. The precise measurement of periastron advance in binary pulsar systems provides a sensitive probe of such long-range forces. In this work, we study the periastron advance constraints from binary pulsar syst…
▽ More
Pulsars, highly magnetized, rotating neutron stars, can have significant muon abundances in their dense cores, making them promising environments to probe ultralight mediators coupled to muons. The precise measurement of periastron advance in binary pulsar systems provides a sensitive probe of such long-range forces. In this work, we study the periastron advance constraints from binary pulsar systems on the ultralight muonic mediators. We compute the muon number fraction in neutron stars, by properly taking into account the suppression effect of the long-range muonic force. We find that the periastron advance constraints impose the most stringent constraints on ultralight muonic mediators in the mass range of $\simeq(10^{-17},\,2\times10^{-15})$ eV, probing muonic couplings as small as $\mathcal{O}(10^{-21})$, which surpass the limits from LIGO/Virgo gravitational wave measurements, by about an order of magnitude.
△ Less
Submitted 5 September, 2025; v1 submitted 18 January, 2025;
originally announced January 2025.
-
Centrality Manipulation in Exclusive Photoproduction at the Electron-Ion Collider
Authors:
Xin Wu,
Xinbai Li,
Zebo Tang,
Kaiyang Wang,
Wangmei Zha
Abstract:
In the context of future electron-ion collision experiments, particularly the Electron-Ion Collider (EIC) and the Electron-Ion Collider in China (EicC), investigating exclusive photoproduction processes is of paramount importance. These processes offer a unique opportunity to probe the gluon structure of nuclei across a broad range of Bjorken-$x$, facilitating measurements of nuclear shadowing and…
▽ More
In the context of future electron-ion collision experiments, particularly the Electron-Ion Collider (EIC) and the Electron-Ion Collider in China (EicC), investigating exclusive photoproduction processes is of paramount importance. These processes offer a unique opportunity to probe the gluon structure of nuclei across a broad range of Bjorken-$x$, facilitating measurements of nuclear shadowing and searches for gluon saturation and/or the color glass condensate. This paper explores the potential of utilizing neutron tagging from Coulomb excitation of nuclei to effectively determine centrality for exclusive photoproduction in electron-ion collisions. By developing the equivalent photon approximation for fast-moving electrons, this work incorporates a coordinate-space-dependent photon flux distribution, elucidating the relationship between the photon transverse momentum distribution and collision impact parameter. Leveraging spatial information from the photon flux, the differential cross section for Coulomb excitation of nuclei is derived. Our calculations demonstrate that neutron tagging can significantly alter impact parameter distributions, thereby providing a robust method for centrality manipulation in electron-ion collisions. This study contributes essential baseline and strategies for exploring the impact parameter dependence of exclusive photoproduction, offering novel insights for experimental design and data analysis. Ultimately, it provides additional information to better visualize the gluon distribution within the nucleus.
△ Less
Submitted 9 October, 2024;
originally announced October 2024.
-
Coalescence formation of muonic atoms at RHIC
Authors:
Xiaofeng Wang,
Frank Geurts,
Zebo Tang,
Kefeng Xin,
Zhangbu Xu,
Yifei Zhang,
Long Zhou
Abstract:
The discovery of exotic mounic atoms, including antimatter hydrogen muonic atoms and kaon mounic atoms, constitutes a milestone in our ability to make and study new forms of matter. Relativistic heavy-ion collisions provide the only likely condition for production and detection of these exotic atoms. Taking a Coulomb correlations into account from the time of the fireball freeze-out until the form…
▽ More
The discovery of exotic mounic atoms, including antimatter hydrogen muonic atoms and kaon mounic atoms, constitutes a milestone in our ability to make and study new forms of matter. Relativistic heavy-ion collisions provide the only likely condition for production and detection of these exotic atoms. Taking a Coulomb correlations into account from the time of the fireball freeze-out until the formation of a stable atom has dramatic consequence on the expected yields of these atoms. When the coalescence model with the assumption of quantum wave function localization is applied to the formation of muonic atoms, we find that the atom yields are about two orders of magnitude higher than previously predicted.
△ Less
Submitted 8 October, 2024;
originally announced October 2024.
-
Constraints on Ultra Heavy Dark Matter Properties from Dwarf Spheroidal Galaxies with LHAASO Observations
Authors:
Zhen Cao,
F. Aharonian,
Q. An,
Axikegu,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
J. T. Cai,
Q. Cao,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
Liang Chen,
Lin Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. H. Chen,
S. Z. Chen
, et al. (255 additional authors not shown)
Abstract:
In this work we try to search for signals generated by ultra-heavy dark matter at the Large High Altitude Air Shower Observatory (LHAASO) data. We look for possible gamma-ray by dark matter annihilation or decay from 16 dwarf spheroidal galaxies in the field of view of LHAASO. Dwarf spheroidal galaxies are among the most promising targets for indirect detection of dark matter which have low fluxes…
▽ More
In this work we try to search for signals generated by ultra-heavy dark matter at the Large High Altitude Air Shower Observatory (LHAASO) data. We look for possible gamma-ray by dark matter annihilation or decay from 16 dwarf spheroidal galaxies in the field of view of LHAASO. Dwarf spheroidal galaxies are among the most promising targets for indirect detection of dark matter which have low fluxes of astrophysical $γ$-ray background while large amount of dark matter. By analyzing more than 700 days observational data at LHAASO, no significant dark matter signal from 1 TeV to 1 EeV is detected. Accordingly we derive the most stringent constraints on the ultra-heavy dark matter annihilation cross-section up to EeV. The constraints on the lifetime of dark matter in decay mode are also derived.
△ Less
Submitted 12 June, 2024;
originally announced June 2024.
-
Probing ultralight isospin-violating mediators at GW170817
Authors:
Zuowei Liu,
Zi-Wei Tang
Abstract:
Gravitational wave (GW) signals arising from binary neutron star mergers offer new, sensitive probes to ultralight mediators. Here we analyze the GW signals in the GW170817 event detected by the LIGO/Virgo collaboration to impose constraints on the ultralight isospin-violating mediator that has different couplings to protons and neutrons. Neutron stars, which primarily consist of neutrons, are the…
▽ More
Gravitational wave (GW) signals arising from binary neutron star mergers offer new, sensitive probes to ultralight mediators. Here we analyze the GW signals in the GW170817 event detected by the LIGO/Virgo collaboration to impose constraints on the ultralight isospin-violating mediator that has different couplings to protons and neutrons. Neutron stars, which primarily consist of neutrons, are the ideal places to probe the isospin-violating mediator. Such a mediator can significantly alter the dynamics of the binary neutron star mergers, through both the long-range Yukawa force and the new dipole radiation. We compute the gravitational waveform by taking into account the new physics effects due to the isospin-violating mediator and use the Bayesian inference to analyze the gravitational wave data in the GW170817 event. We find that although the current fifth force experiments (including MICROSCOPE and EW) often provide more stringent constraints than the GW170817 data, in the parameter space where the isospin-violating force is completely screened by the Earth (namely, the Earth is charge neutral under this force), the GW170817 data offer the leading constraints: the upper bound on the neutron coupling is $f_n \lesssim 10^{-19}$ in the mediator mass range of $\simeq(3\times10^{-16},\,5\times10^{-14})$ eV.
△ Less
Submitted 19 May, 2024; v1 submitted 9 February, 2024;
originally announced February 2024.
-
Cavity as Radio Telescope for Galactic Dark Photon
Authors:
Yanjie Zeng,
Yuxin Liu,
Chunlong Li,
Yuxiang Liu,
Bo Wang,
Zhenxing Tang,
Yuting Yang,
Liwen Feng,
Peng Sha,
Zhenghui Mi,
Weimin Pan,
Tianzong Zhang,
Zhongqing Ji,
Yirong Jin,
Jiankui Hao,
Lin Lin,
Fang Wang,
Huamu Xie,
Senlin Huang,
Yifan Chen,
Jing Shu
Abstract:
Dark photons, as a minimal extension of the Standard Model through an additional Abelian gauge group, may propagate relativistically across the galaxy, originating from dark matter decay or annihilation, thereby contributing to a galactic dark photon background. The generation of dark photons typically favors certain polarization modes, which are dependent on the interactions between dark matter a…
▽ More
Dark photons, as a minimal extension of the Standard Model through an additional Abelian gauge group, may propagate relativistically across the galaxy, originating from dark matter decay or annihilation, thereby contributing to a galactic dark photon background. The generation of dark photons typically favors certain polarization modes, which are dependent on the interactions between dark matter and dark photons. We introduce a framework in which a resonant cavity is utilized to detect and differentiate these polarizations, leveraging the daily variation in expected signals due to the anisotropic distribution of dark photons and the rotation of the Earth. We conduct an experimental search using superconducting radio-frequency cavities, noted for their exceptionally high quality factors, proving them to be effective telescopes for observing galactic dark photons. This approach establishes the most stringent limits yet on the kinetic mixing coefficient between dark photons and electromagnetic photons, thereby unveiling a novel avenue for the indirect search for dark matter via multi-messenger astronomy.
△ Less
Submitted 12 January, 2025; v1 submitted 5 February, 2024;
originally announced February 2024.
-
Exploring the photoproduction of $ρ$ and $φ$ in hadronic heavy-ion collisions
Authors:
Kaifeng Shen,
Xin Wu,
Zebo Tang,
Wangmei Zha
Abstract:
Significant enhancements of J/$ψ$ production have been observed by various experiments at RHIC and LHC for very low transverse momenta in peripheral heavy-ion collisions, which has ignited a surge of investigations into photon-induced processes in hadronic heavy-ion collisions (HHICs). Within this wave of research enthusiasm, the search for more photon induced products in HHICs becomes paramount.…
▽ More
Significant enhancements of J/$ψ$ production have been observed by various experiments at RHIC and LHC for very low transverse momenta in peripheral heavy-ion collisions, which has ignited a surge of investigations into photon-induced processes in hadronic heavy-ion collisions (HHICs). Within this wave of research enthusiasm, the search for more photon induced products in HHICs becomes paramount. In this paper, we perform the calculation of the $ρ$ and $φ$ production resulting from photon-nucleus interactions in HHICs, which are crucial probes for studying the properties of Quark-Gluon Plasma (QGP) in HHICs. Our study reveals that, in comparison to hadronic production, the photon-induced production of $ρ$ and $φ$ does not reach the same level of significance as that observed in J/$ψ$ production. Nevertheless, it remains substantial, especially in peripheral collisions, holding great promise for experimental verification in the imminent future.
△ Less
Submitted 15 January, 2024;
originally announced January 2024.
-
Contribution of coherent electron production to measurements of heavy-flavor decayed electrons in heavy-ion collisions
Authors:
Shenghui Zhang,
Rongrong Ma,
Yuanjing Ji,
Zebo Tang,
Qian Yang,
Yifei Zhang,
Wangwei Zha
Abstract:
Heavy quarks, produced at early stages of heavy-ion collisions, are an excellent probe of the Quark-Gluon Plasma (QGP) also created in these collisions. Electrons from open heavy-flavor hadron decays (HFE) are good proxies for heavy quarks, and have been measured extensively in the last two decades to study QGP properties. These measurements are traditionally carried out by subtracting all known b…
▽ More
Heavy quarks, produced at early stages of heavy-ion collisions, are an excellent probe of the Quark-Gluon Plasma (QGP) also created in these collisions. Electrons from open heavy-flavor hadron decays (HFE) are good proxies for heavy quarks, and have been measured extensively in the last two decades to study QGP properties. These measurements are traditionally carried out by subtracting all known background sources from the inclusive electron sample. More recently, a significant enhancement of $e^+e^-$ pair production at very low transverse momenta was observed in peripheral heavy-ion collisions. The production characteristics is consistent with coherent photon-photon interactions, which should also constitute a background source to the HFE measurements. In this article, we provide theoretical predictions for the contribution of coherent electron production to HFE as a function of transverse momentum, centrality and collision energy in Au+Au and Pb+Pb collisions.
△ Less
Submitted 15 April, 2024; v1 submitted 28 November, 2023;
originally announced November 2023.
-
Measurements of charged-particle multiplicity dependence of higher-order net-proton cumulants in $p$+$p$ collisions at $\sqrt{s} =$ 200 GeV from STAR at RHIC
Authors:
STAR Collaboration,
M. I. Abdulhamid,
B. E. Aboona,
J. Adam,
L. Adamczyk,
J. R. Adams,
I. Aggarwal,
M. M. Aggarwal,
Z. Ahammed,
E. C. Aschenauer,
S. Aslam,
J. Atchison,
V. Bairathi,
J. G. Ball Cap,
K. Barish,
R. Bellwied,
P. Bhagat,
A. Bhasin,
S. Bhatta,
S. R. Bhosale,
J. Bielcik,
J. Bielcikova,
J. D. Brandenburg,
C. Broodo,
X. Z. Cai
, et al. (338 additional authors not shown)
Abstract:
We report on the charged-particle multiplicity dependence of net-proton cumulant ratios up to sixth order from $\sqrt{s}=200$ GeV $p$+$p$ collisions at the Relativistic Heavy Ion Collider (RHIC). The measured ratios $C_{4}/C_{2}$, $C_{5}/C_{1}$, and $C_{6}/C_{2}$ decrease with increased charged-particle multiplicity and rapidity acceptance. Neither the Skellam baselines nor PYTHIA8 calculations ac…
▽ More
We report on the charged-particle multiplicity dependence of net-proton cumulant ratios up to sixth order from $\sqrt{s}=200$ GeV $p$+$p$ collisions at the Relativistic Heavy Ion Collider (RHIC). The measured ratios $C_{4}/C_{2}$, $C_{5}/C_{1}$, and $C_{6}/C_{2}$ decrease with increased charged-particle multiplicity and rapidity acceptance. Neither the Skellam baselines nor PYTHIA8 calculations account for the observed multiplicity dependence. In addition, the ratios $C_{5}/C_{1}$ and $C_{6}/C_{2}$ approach negative values in the highest-multiplicity events, which implies that thermalized QCD matter may be formed in $p$+$p$ collisions.
△ Less
Submitted 4 September, 2024; v1 submitted 1 November, 2023;
originally announced November 2023.
-
$T$-matrix Analysis of Static Wilson Line Correlators from Lattice QCD at Finite Temperature
Authors:
Zhanduo Tang,
Swagato Mukherjee,
Peter Petreczky,
Ralf Rapp
Abstract:
We utilize a previously constructed thermodynamic $T$-matrix approach to the quark-gluon plasma (QGP) to calculate Wilson line correlators (WLCs) of a static quark-antiquark pair and apply them to the results from 2+1-flavor lattice-QCD (lQCD) computations with realistic pion mass. The self-consistent $T$-matrix results, which include constraints from the lQCD equation of state in the light-parton…
▽ More
We utilize a previously constructed thermodynamic $T$-matrix approach to the quark-gluon plasma (QGP) to calculate Wilson line correlators (WLCs) of a static quark-antiquark pair and apply them to the results from 2+1-flavor lattice-QCD (lQCD) computations with realistic pion mass. The self-consistent $T$-matrix results, which include constraints from the lQCD equation of state in the light-parton sector, can describe the lQCD data for WLCs fairly well once refinements of the input parameters are implemented. In particular, the input potential requires less screening than used in previous $T$-matrix analyses. Pertinent predictions for the spectral and transport properties of the QGP are discussed, including the spatial diffusion coefficient for heavy quarks which turns out to have a rather weak temperature dependence, in approximate agreement with recent lQCD results.
△ Less
Submitted 28 October, 2023;
originally announced October 2023.
-
The effect of initial nuclear deformation on dielectron photoproduction in hadronic heavy-ion collisions
Authors:
Jiaxuan. Luo,
Xinbai. Li,
Zebo. Tang,
Xin. Wu,
Wangmei. Zha
Abstract:
Significant excesses of $e^+e^-$ pair production at very low transverse momentum ($p_T <$ 0.15 GeV/c) were observed by the STAR collaboration in hadronic heavy-ion collisions. Such enhancement is assumed to be a sign of photon-photon production in heavy-ion collisions with hadronic overlap, based on comparisons with model calculations for spherical Au + Au collisions. However, there is a lack of c…
▽ More
Significant excesses of $e^+e^-$ pair production at very low transverse momentum ($p_T <$ 0.15 GeV/c) were observed by the STAR collaboration in hadronic heavy-ion collisions. Such enhancement is assumed to be a sign of photon-photon production in heavy-ion collisions with hadronic overlap, based on comparisons with model calculations for spherical Au + Au collisions. However, there is a lack of calculations for $e^+e^-$ pair production from coherent photon-photon interactions in hadronic U + U collisions, due to the deformity of Uranium nuclei. In this article, we present calculations for $e^+e^-$ pair photoproduction at $\sqrt{s_{NN}}$ = 193 GeV in both spherical and deformed U + U collisions within STAR detector acceptance using the equivalent photon approximation (EPA). We conduct event-by-event analysis to investigate the effects of initial nuclear deformation on pair production. Our numerical results show good agreement with experimental data for the 40%--60% and 60%--80% centrality classes in U + U collisions, and the differences between spherical and deformed configurations are approximately 3\%. We also calculate the yields of the photoproduced $e^+e^-$ pair in hadronic deformed Ru + Ru and Zr + Zr collisions at $\sqrt{s_{NN}}$ = 200 GeV. The results reveal that the ratios of the yields of Ru to Zr exhibit very small differences ($<$ 1%) between spherical and deformed cases.
△ Less
Submitted 6 August, 2023;
originally announced August 2023.
-
Spin-Induced Interactions and Heavy-Quark Transport in the QGP
Authors:
Zhanduo Tang,
Ralf Rapp
Abstract:
A previously constructed $T$-matrix approach for studying the quark-gluon plasma (QGP) is improved by incorporating spin-dependent interactions between partons. These interactions arise from the relativistic corrections to the Cornell potential. We first study the vacuum spectroscopy of quarkonia with this potential and find that a significant admixture of a vector component in the confining poten…
▽ More
A previously constructed $T$-matrix approach for studying the quark-gluon plasma (QGP) is improved by incorporating spin-dependent interactions between partons. These interactions arise from the relativistic corrections to the Cornell potential. We first study the vacuum spectroscopy of quarkonia with this potential and find that a significant admixture of a vector component in the confining potential (rather than the previously considered scalar interaction) improves the description of the experimental mass splittings in $S$- and $P$-wave states. The in-medium potential containing the vector component in the confining interaction is constrained by fitting lattice-QCD results for heavy-quark (HQ) free energies and the equation of state (EoS) computed within in the selfconsistent $T$-matrix framework. We subsequently extract the transport coefficients for charm quarks in the QGP with the improved in-medium potentials. The relativistic corrections to the vector component of the confining potential cause a notable increase in the thermal relaxation rate of charm quarks in the QGP in comparison to previous calculations, especially at high momenta. These results are expected to have significant ramifications for the phenomenology of open heavy-flavor observables at RHIC and the LHC.
△ Less
Submitted 29 July, 2023;
originally announced July 2023.
-
Exploring the higher-order QED effects on the differential distributions of Breit-Wheeler process in relativistic heavy-ion collisions
Authors:
Xinbai. Li,
Jiaxuan. Luo,
Zebo. Tang,
Xin. Wu,
Wangmei. Zha
Abstract:
Extensive studies have been conducted in the past few decades to investigate potential signatures of higher-order QED effects in high-energy electromagnetic scattering processes. In our previous work, we have identified evidence of higher-order corrections in the total cross-section for the Breit-Wheeler process in relativistic heavy-ion collisions. However, the presence of higher-order QED correc…
▽ More
Extensive studies have been conducted in the past few decades to investigate potential signatures of higher-order QED effects in high-energy electromagnetic scattering processes. In our previous work, we have identified evidence of higher-order corrections in the total cross-section for the Breit-Wheeler process in relativistic heavy-ion collisions. However, the presence of higher-order QED corrections cannot be unambiguously proven solely based on total cross-section measurements due to substantial experimental and theoretical uncertainties. The objective of this paper is to explore the sensitivity of specific differential observables in the Breit-Wheeler process to higher-order QED effects in high-energy heavy-ion collisions. These investigations will provide guidance in determining the presence or absence of higher-order QED processes by conducting precise measurements in future experiments.
△ Less
Submitted 4 July, 2023;
originally announced July 2023.
-
The First LHAASO Catalog of Gamma-Ray Sources
Authors:
Zhen Cao,
F. Aharonian,
Q. An,
Axikegu,
Y. X. Bai,
Y. W. Bao,
D. Bastieri,
X. J. Bi,
Y. J. Bi,
J. T. Cai,
Q. Cao,
W. Y. Cao,
Zhe Cao,
J. Chang,
J. F. Chang,
A. M. Chen,
E. S. Chen,
Liang Chen,
Lin Chen,
Long Chen,
M. J. Chen,
M. L. Chen,
Q. H. Chen,
S. H. Chen,
S. Z. Chen
, et al. (255 additional authors not shown)
Abstract:
We present the first catalog of very-high energy and ultra-high energy gamma-ray sources detected by the Large High Altitude Air Shower Observatory (LHAASO). The catalog was compiled using 508 days of data collected by the Water Cherenkov Detector Array (WCDA) from March 2021 to September 2022 and 933 days of data recorded by the Kilometer Squared Array (KM2A) from January 2020 to September 2022.…
▽ More
We present the first catalog of very-high energy and ultra-high energy gamma-ray sources detected by the Large High Altitude Air Shower Observatory (LHAASO). The catalog was compiled using 508 days of data collected by the Water Cherenkov Detector Array (WCDA) from March 2021 to September 2022 and 933 days of data recorded by the Kilometer Squared Array (KM2A) from January 2020 to September 2022. This catalog represents the main result from the most sensitive large coverage gamma-ray survey of the sky above 1 TeV, covering declination from $-$20$^{\circ}$ to 80$^{\circ}$. In total, the catalog contains 90 sources with an extended size smaller than $2^\circ$ and a significance of detection at $> 5σ$. Based on our source association criteria, 32 new TeV sources are proposed in this study. Among the 90 sources, 43 sources are detected with ultra-high energy ($E > 100$ TeV) emission at $> 4σ$ significance level. We provide the position, extension, and spectral characteristics of all the sources in this catalog.
△ Less
Submitted 27 November, 2023; v1 submitted 26 May, 2023;
originally announced May 2023.
-
First Scan Search for Dark Photon Dark Matter with a Tunable Superconducting Radio-Frequency Cavity
Authors:
SHANHE Collaboration,
Zhenxing Tang,
Bo Wang,
Yifan Chen,
Yanjie Zeng,
Chunlong Li,
Yuting Yang,
Liwen Feng,
Peng Sha,
Zhenghui Mi,
Weimin Pan,
Tianzong Zhang,
Yirong Jin,
Jiankui Hao,
Lin Lin,
Fang Wang,
Huamu Xie,
Senlin Huang,
Jing Shu
Abstract:
Dark photons have emerged as promising candidates for dark matter, and their search is a top priority in particle physics, astrophysics, and cosmology. We report the first use of a tunable niobium superconducting radio-frequency cavity for a scan search of dark photon dark matter with innovative data analysis techniques. We mechanically adjusted the resonant frequency of a cavity submerged in liqu…
▽ More
Dark photons have emerged as promising candidates for dark matter, and their search is a top priority in particle physics, astrophysics, and cosmology. We report the first use of a tunable niobium superconducting radio-frequency cavity for a scan search of dark photon dark matter with innovative data analysis techniques. We mechanically adjusted the resonant frequency of a cavity submerged in liquid helium at a temperature of $2$ K, and scanned the dark photon mass over a frequency range of $1.37$ MHz centered at $1.3$ GHz. Our study leveraged the superconducting radio-frequency cavity's remarkably high quality factors of approximately $10^{10}$, resulting in the most stringent constraints to date on a substantial portion of the exclusion parameter space on the kinetic mixing coefficient $ε$ between dark photons and electromagnetic photons, yielding a value of $ε< 2.2 \times 10^{-16}$.
△ Less
Submitted 13 July, 2024; v1 submitted 16 May, 2023;
originally announced May 2023.
-
Potential of Constraining Propagation Parameters of Galactic Cosmic Rays with the High Energy cosmic-Radiation Detection facility onboard China's Space Station
Authors:
Zhi-Hui Xu,
Qiang Yuan,
Zhi-Cheng Tang,
Xiao-Jun Bi
Abstract:
Precise measurements of the spectra of secondary and primary cosmic rays are crucial for understanding the origin and propagation of those energetic particles. The High Energy cosmic-Radiation Detection (HERD) facility onboard China`s Space Station, which is expected to operate in 2027, will push the direct measurements of cosmic ray fluxes precisely up to PeV energies. In this work, we investigat…
▽ More
Precise measurements of the spectra of secondary and primary cosmic rays are crucial for understanding the origin and propagation of those energetic particles. The High Energy cosmic-Radiation Detection (HERD) facility onboard China`s Space Station, which is expected to operate in 2027, will push the direct measurements of cosmic ray fluxes precisely up to PeV energies. In this work, we investigate the potential of HERD on studying the propagation of cosmic rays using the measurements of boron, carbon, and oxygen spectra. We find that, compared with the current results, the new HERD measurements can improve the accuracy of the propagation parameters by 8\% to 40\%. The constraints on the injection spectra at high energies will also be improved.
△ Less
Submitted 21 April, 2023;
originally announced April 2023.
-
Spin-Dependent Interactions and Heavy-Quark Transport in the QGP
Authors:
Zhanduo Tang,
Ralf Rapp
Abstract:
We extend a previously constructed T-matrix approach to the quark-gluon plasma (QGP) to include the effects of spin-dependent interactions between partons. Following earlier work within the relativistic quark model, the spin-dependent interactions figure as relativistic corrections to the Cornell potential. When applied to the vacuum spectroscopy of quarkonia, in particular their mass splittings i…
▽ More
We extend a previously constructed T-matrix approach to the quark-gluon plasma (QGP) to include the effects of spin-dependent interactions between partons. Following earlier work within the relativistic quark model, the spin-dependent interactions figure as relativistic corrections to the Cornell potential. When applied to the vacuum spectroscopy of quarkonia, in particular their mass splittings in S- and P-wave states, the issue of the Lorentz structure of the confining potential arises. We confirm that a significant admixture of a vector interaction (to the previously assumed scalar interaction) improves the description of the experimental mass splittings. The temperature corrections to the in-medium potential are constrained by results from thermal lattice-QCD for the equation of state (EoS) and heavy-quark (HQ) free energy in a selfconsistent set-up for heavy- and light-parton spectral functions in the QGP. We then deploy the refined in-medium heavy-light T-matrix to compute the charm-quark transport coefficients in the QGP. The vector component of the confining potential, through its relativistic corrections, enhances the friction coefficient for charm quarks in the QGP over previous calculations by tens of percent at low momenta and temperatures, and more at higher momenta. Our results are promising for improving the current phenomenology of open heavy-flavor observables at Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC).
△ Less
Submitted 8 August, 2023; v1 submitted 4 April, 2023;
originally announced April 2023.
-
STCF Conceptual Design Report: Volume 1 -- Physics & Detector
Authors:
M. Achasov,
X. C. Ai,
R. Aliberti,
L. P. An,
Q. An,
X. Z. Bai,
Y. Bai,
O. Bakina,
A. Barnyakov,
V. Blinov,
V. Bobrovnikov,
D. Bodrov,
A. Bogomyagkov,
A. Bondar,
I. Boyko,
Z. H. Bu,
F. M. Cai,
H. Cai,
J. J. Cao,
Q. H. Cao,
Z. Cao,
Q. Chang,
K. T. Chao,
D. Y. Chen,
H. Chen
, et al. (413 additional authors not shown)
Abstract:
The Super $τ$-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of $0.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1}$ or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present $τ$-Charm factory -- the BEPCII,…
▽ More
The Super $τ$-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of $0.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1}$ or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present $τ$-Charm factory -- the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R\&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R\&D and physics case studies.
△ Less
Submitted 5 October, 2023; v1 submitted 28 March, 2023;
originally announced March 2023.
-
Reaction plane alignment with linearly polarized photon in heavy-ion collisions
Authors:
Xin Wu,
Xinbai Li,
Zebo Tang,
Pengfei Wang,
Wangmei Zha
Abstract:
The collective observables play critical roles in probing the properties of quark-gluon-plasma created in relativistic heavy-ion collisions, in which the information on initial collision geometry is crucial. However, the initial collision geometry, e.g., the reaction plane, cannot be directly extracted in the experiment. In this paper, we demonstrate the idea of determining the reaction plane via…
▽ More
The collective observables play critical roles in probing the properties of quark-gluon-plasma created in relativistic heavy-ion collisions, in which the information on initial collision geometry is crucial. However, the initial collision geometry, e.g., the reaction plane, cannot be directly extracted in the experiment. In this paper, we demonstrate the idea of determining the reaction plane via the feature of linear polarization of the coherent photoproduction process and discuss the advantages of the proposed approach in comparison with traditional methods.
△ Less
Submitted 21 February, 2023;
originally announced February 2023.
-
Particle Physics at the European Spallation Source
Authors:
H. Abele,
A. Alekou,
A. Algora,
K. Andersen,
S. Baessler,
L. Barron-Palos,
J. Barrow,
E. Baussan,
P. Bentley,
Z. Berezhiani,
Y. Bessler,
A. K. Bhattacharyya,
A. Bianchi,
J. Bijnens,
C. Blanco,
N. Blaskovic Kraljevic,
M. Blennow,
K. Bodek,
M. Bogomilov,
C. Bohm,
B. Bolling,
E. Bouquerel,
G. Brooijmans,
L. J. Broussard,
O. Buchan
, et al. (154 additional authors not shown)
Abstract:
Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world's brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons…
▽ More
Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world's brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons and neutrinos produced at the ESS for high precision (sensitivity) measurements (searches).
△ Less
Submitted 30 January, 2024; v1 submitted 18 November, 2022;
originally announced November 2022.
-
Charmonium, $B_c$ and X(3872) Transport at the LHC
Authors:
Biaogang Wu,
Zhanduo Tang,
Min He,
Ralf Rapp
Abstract:
We deploy a kinetic-rate equation to evaluate the transport of $J/ψ$, $ψ(2S)$, $B_c$ and X(3872) in ultra-relativistic heavy-ion collisions and compare their production yields to experimental data from the Large Hadron Collider. The rate equation has two main transport parameters, i.e., the equilibrium limit and reaction rate for each state. The temperature-dependent equilibrium limits include cha…
▽ More
We deploy a kinetic-rate equation to evaluate the transport of $J/ψ$, $ψ(2S)$, $B_c$ and X(3872) in ultra-relativistic heavy-ion collisions and compare their production yields to experimental data from the Large Hadron Collider. The rate equation has two main transport parameters, i.e., the equilibrium limit and reaction rate for each state. The temperature-dependent equilibrium limits include charm- and bottom-quark fugacities based on their initial production. The reaction rates for charmonia, bottomonia and $B_c$ rely on charm- and bottom-quark masses as well as binding energies from a thermodynamic $T$-matrix approach. For the X(3872) particle, its internal structure information is encoded in reaction rates and initial conditions in the hadronic phase via two different scenarios: a loosely bound hadronic molecule vs. a compact diquark-antidiquark tetraquark.
△ Less
Submitted 27 September, 2022;
originally announced September 2022.
-
Higher-Order Cumulants and Correlation Functions of Proton Multiplicity Distributions in $\sqrt{s_{\mathrm{NN}}}$ = 3 GeV Au+Au Collisions at the RHIC STAR Experiment
Authors:
STAR Collaboration,
M. S. Abdallah,
B. E. Aboona,
J. Adam,
L. Adamczyk,
J. R. Adams,
J. K. Adkins,
I. Aggarwal,
M. M. Aggarwal,
Z. Ahammed,
D. M. Anderson,
E. C. Aschenauer,
J. Atchison,
V. Bairathi,
W. Baker,
J. G. Ball Cap,
K. Barish,
R. Bellwied,
P. Bhagat,
A. Bhasin,
S. Bhatta,
J. Bielcik,
J. Bielcikova,
J. D. Brandenburg,
X. Z. Cai
, et al. (349 additional authors not shown)
Abstract:
We report a measurement of cumulants and correlation functions of event-by-event proton multiplicity distributions from fixed-target Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV measured by the STAR experiment. Protons are identified within the rapidity ($y$) and transverse momentum ($p_{\rm T}$) region $-0.9 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$ in the center-of-mass frame. A systematic a…
▽ More
We report a measurement of cumulants and correlation functions of event-by-event proton multiplicity distributions from fixed-target Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV measured by the STAR experiment. Protons are identified within the rapidity ($y$) and transverse momentum ($p_{\rm T}$) region $-0.9 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$ in the center-of-mass frame. A systematic analysis of the proton cumulants and correlation functions up to sixth-order as well as the corresponding ratios as a function of the collision centrality, $p_{\rm T}$, and $y$ are presented. The effect of pileup and initial volume fluctuations on these observables and the respective corrections are discussed in detail. The results are compared to calculations from the hadronic transport UrQMD model as well as a hydrodynamic model. In the most central 5\% collisions, the value of proton cumulant ratio $C_4/C_2$ is negative, drastically different from the values observed in Au+Au collisions at higher energies. Compared to model calculations including Lattice QCD, a hadronic transport model, and a hydrodynamic model, the strong suppression in the ratio of $C_4/C_2$ at 3 GeV Au+Au collisions indicates an energy regime dominated by hadronic interactions.
△ Less
Submitted 22 February, 2023; v1 submitted 24 September, 2022;
originally announced September 2022.
-
Beam Energy Dependence of Triton Production and Yield Ratio ($\mathrm{N}_t \times \mathrm{N}_p/\mathrm{N}_d^2$) in Au+Au Collisions at RHIC
Authors:
STAR Collaboration,
M. I. Abdulhamid,
B. E. Aboona,
J. Adam,
J. R. Adams,
G. Agakishiev,
I. Aggarwal,
M. M. Aggarwal,
Z. Ahammed,
A. Aitbaev,
I. Alekseev,
D. M. Anderson,
A. Aparin,
S. Aslam,
J. Atchison,
G. S. Averichev,
V. Bairathi,
W. Baker,
J. G. Ball Cap,
K. Barish,
P. Bhagat,
A. Bhasin,
S. Bhatta,
I. G. Bordyuzhin,
J. D. Brandenburg
, et al. (333 additional authors not shown)
Abstract:
We report the triton ($t$) production in mid-rapidity ($|y| <$ 0.5) Au+Au collisions at $\sqrt{s_\mathrm{NN}}$= 7.7--200 GeV measured by the STAR experiment from the first phase of the beam energy scan at the Relativistic Heavy Ion Collider (RHIC). The nuclear compound yield ratio ($\mathrm{N}_t \times \mathrm{N}_p/\mathrm{N}_d^2$), which is predicted to be sensitive to the fluctuation of local ne…
▽ More
We report the triton ($t$) production in mid-rapidity ($|y| <$ 0.5) Au+Au collisions at $\sqrt{s_\mathrm{NN}}$= 7.7--200 GeV measured by the STAR experiment from the first phase of the beam energy scan at the Relativistic Heavy Ion Collider (RHIC). The nuclear compound yield ratio ($\mathrm{N}_t \times \mathrm{N}_p/\mathrm{N}_d^2$), which is predicted to be sensitive to the fluctuation of local neutron density, is observed to decrease monotonically with increasing charged-particle multiplicity ($dN_{ch}/dη$) and follows a scaling behavior. The $dN_{ch}/dη$ dependence of the yield ratio is compared to calculations from coalescence and thermal models. Enhancements in the yield ratios relative to the coalescence baseline are observed in the 0\%-10\% most central collisions at 19.6 and 27 GeV, with a significance of 2.3$σ$ and 3.4$σ$, respectively, giving a combined significance of 4.1$σ$. The enhancements are not observed in peripheral collisions or model calculations without critical fluctuation, and decreases with a smaller $p_{T}$ acceptance. The physics implications of these results on the QCD phase structure and the production mechanism of light nuclei in heavy-ion collisions are discussed.
△ Less
Submitted 18 May, 2023; v1 submitted 16 September, 2022;
originally announced September 2022.
-
Search for the Chiral Magnetic Effect in Au+Au collisions at $\sqrt{s_{_{\rm{NN}}}}=27$ GeV with the STAR forward Event Plane Detectors
Authors:
STAR Collaboration,
B. E. Aboona,
J. Adam,
L. Adamczyk,
J. R. Adams,
I. Aggarwal,
M. M. Aggarwal,
Z. Ahammed,
D. M. Anderson,
E. C. Aschenauer,
J. Atchison,
V. Bairathi,
W. Baker,
J. G. Ball Cap,
K. Barish,
R. Bellwied,
P. Bhagat,
A. Bhasin,
S. Bhatta,
J. Bielcik,
J. Bielcikova,
J. D. Brandenburg,
X. Z. Cai,
H. Caines,
M. Calderón de la Barca Sánchez
, et al. (347 additional authors not shown)
Abstract:
A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be s…
▽ More
A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be strongly energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this Letter, we present a low energy search for the CME in Au+Au collisions at $\sqrt{s_{_{\rm{NN}}}}=27$ GeV. We measure elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both mid-rapidity $|η|<1.0$ and at forward rapidity $2.1 < |η|<5.1$. We compare the results based on the directed flow plane ($Ψ_1$) at forward rapidity and the elliptic flow plane ($Ψ_2$) at both central and forward rapidity. The CME scenario is expected to result in a larger correlation relative to $Ψ_1$ than to $Ψ_2$, while a flow driven background scenario would lead to a consistent result for both event planes. In 10-50\% centrality, results using three different event planes are found to be consistent within experimental uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain an upper limit on the deviation from a flow driven background scenario at the 95\% confidence level. This work opens up a possible road map towards future CME search with the high statistics data from the RHIC Beam Energy Scan Phase-II.
△ Less
Submitted 19 April, 2023; v1 submitted 7 September, 2022;
originally announced September 2022.
-
Pion, kaon, and (anti-)proton production in U+U Collisions at $\sqrt{s_{NN}}$ = 193 GeV measured with the STAR detector
Authors:
STAR Collaboration,
M. S. Abdallah,
B. E. Aboona,
J. Adam,
J. R. Adams,
J. K. Adkins,
G. Agakishiev,
I. Aggarwal,
M. M. Aggarwal,
Z. Ahammed,
A. Aitbaev,
I. Alekseev,
D. M. Anderson,
A. Aparin,
J. Atchison,
G. S. Averichev,
V. Bairathi,
W. Baker,
J. G. Ball Cap,
K. Barish,
P. Bhagat,
A. Bhasin,
S. Bhatta,
I. G. Bordyuzhin,
J. D. Brandenburg
, et al. (330 additional authors not shown)
Abstract:
We present the first measurements of transverse momentum spectra of $π^{\pm}$, $K^{\pm}$, $p(\bar{p})$ at midrapidity ($|y| < 0.1$) in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV with the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The centrality dependence of particle yields, average transverse momenta, particle ratios and kinetic freeze-out parameters are discussed. The results…
▽ More
We present the first measurements of transverse momentum spectra of $π^{\pm}$, $K^{\pm}$, $p(\bar{p})$ at midrapidity ($|y| < 0.1$) in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV with the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The centrality dependence of particle yields, average transverse momenta, particle ratios and kinetic freeze-out parameters are discussed. The results are compared with the published results from Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV in STAR. The results are also compared to those from A Multi Phase Transport (AMPT) model.
△ Less
Submitted 11 February, 2023; v1 submitted 1 August, 2022;
originally announced August 2022.
-
Search for baryon junctions in photonuclear processes and isobar collisions at RHIC
Authors:
Nicole Lewis,
Wendi Lv,
Mason Alexander Ross,
Chun Yuen Tsang,
James Daniel Brandenburg,
Zi-Wei Lin,
Rongrong Ma,
Zebo Tang,
Prithwish Tribedy,
Zhangbu Xu
Abstract:
During the early development of Quantum Chromodynamics, it was proposed that baryon number could be carried by a non-perturbative Y-shaped topology of gluon fields, called the gluon junction, rather than by the valence quarks as in the QCD standard model. A puzzling feature of ultra-relativistic nucleus-nucleus collisions is the apparent substantial baryon excess in the midrapidity region that cou…
▽ More
During the early development of Quantum Chromodynamics, it was proposed that baryon number could be carried by a non-perturbative Y-shaped topology of gluon fields, called the gluon junction, rather than by the valence quarks as in the QCD standard model. A puzzling feature of ultra-relativistic nucleus-nucleus collisions is the apparent substantial baryon excess in the midrapidity region that could not be adequately accounted for in most conventional models of quark and diquark transport. The transport of baryonic gluon junctions is predicted to lead to a characteristic exponential distribution of net-baryon density with rapidity and could resolve the puzzle. In this context we point out that the rapidity density of net-baryons near midrapidity indeed follows an exponential distribution with a slope of $-0.61\pm0.03$ as a function of beam rapidity in the existing global data from A+A collisions at AGS, SPS and RHIC energies. To further test if quarks or gluon junctions carry the baryon quantum number, we propose to study the absolute magnitude of the baryon vs. charge stopping in isobar collisions at RHIC. We also argue that semi-inclusive photon-induced processes ($γ+p$/A) at RHIC kinematics provide an opportunity to search for the signatures of the baryon junction and to shed light onto the mechanisms of observed baryon excess in the mid-rapidity region in ultra-relativistic nucleus-nucleus collisions. Such measurements can be further validated in A+A collisions at the LHC and $e+p$/A collisions at the EIC.
△ Less
Submitted 28 August, 2024; v1 submitted 11 May, 2022;
originally announced May 2022.
-
Pattern of Global Spin Alignment of $φ$ and $K^{*0}$ mesons in Heavy-Ion Collisions
Authors:
STAR Collaboration,
M. S. Abdallah,
B. E. Aboona,
J. Adam,
L. Adamczyk,
J. R. Adams,
J. K. Adkins,
G. Agakishiev,
I. Aggarwal,
M. M. Aggarwal,
Z. Ahammed,
A. Aitbaev,
I. Alekseev,
D. M. Anderson,
A. Aparin,
E. C. Aschenauer,
M. U. Ashraf,
F. G. Atetalla,
G. S. Averichev,
V. Bairathi,
W. Baker,
J. G. Ball Cap,
K. Barish,
A. Behera,
R. Bellwied
, et al. (368 additional authors not shown)
Abstract:
Notwithstanding decades of progress since Yukawa first developed a description of the force between nucleons in terms of meson exchange, a full understanding of the strong interaction remains a major challenge in modern science. One remaining difficulty arises from the non-perturbative nature of the strong force, which leads to the phenomenon of quark confinement at distances on the order of the s…
▽ More
Notwithstanding decades of progress since Yukawa first developed a description of the force between nucleons in terms of meson exchange, a full understanding of the strong interaction remains a major challenge in modern science. One remaining difficulty arises from the non-perturbative nature of the strong force, which leads to the phenomenon of quark confinement at distances on the order of the size of the proton. Here we show that in relativistic heavy-ion collisions, where quarks and gluons are set free over an extended volume, two species of produced vector (spin-1) mesons, namely $φ$ and $K^{*0}$, emerge with a surprising pattern of global spin alignment. In particular, the global spin alignment for $φ$ is unexpectedly large, while that for $K^{*0}$ is consistent with zero. The observed spin-alignment pattern and magnitude for the $φ$ cannot be explained by conventional mechanisms, while a model with a connection to strong force fields, i.e. an effective proxy description within the Standard Model and Quantum Chromodynamics, accommodates the current data. This connection, if fully established, will open a potential new avenue for studying the behaviour of strong force fields.
△ Less
Submitted 18 January, 2023; v1 submitted 5 April, 2022;
originally announced April 2022.
-
Search for the Chiral Magnetic Effect with Isobar Collisions at $\sqrt{s_{NN}}$ = 200 GeV by the STAR Collaboration at RHIC
Authors:
STAR Collaboration,
M. S. Abdallah,
B. E. Aboona,
J. Adam,
L. Adamczyk,
J. R. Adams,
J. K. Adkins,
G. Agakishiev,
I. Aggarwal,
M. M. Aggarwal,
Z. Ahammed,
I. Alekseev,
D. M. Anderson,
A. Aparin,
E. C. Aschenauer,
M. U. Ashraf,
F. G. Atetalla,
A. Attri,
G. S. Averichev,
V. Bairathi,
W. Baker,
J. G. Ball Cap,
K. Barish,
A. Behera,
R. Bellwied
, et al. (373 additional authors not shown)
Abstract:
The chiral magnetic effect (CME) is predicted to occur as a consequence of a local violation of $\cal P$ and $\cal CP$ symmetries of the strong interaction amidst a strong electro-magnetic field generated in relativistic heavy-ion collisions. Experimental manifestation of the CME involves a separation of positively and negatively charged hadrons along the direction of the magnetic field. Previous…
▽ More
The chiral magnetic effect (CME) is predicted to occur as a consequence of a local violation of $\cal P$ and $\cal CP$ symmetries of the strong interaction amidst a strong electro-magnetic field generated in relativistic heavy-ion collisions. Experimental manifestation of the CME involves a separation of positively and negatively charged hadrons along the direction of the magnetic field. Previous measurements of the CME-sensitive charge-separation observables remain inconclusive because of large background contributions. In order to better control the influence of signal and backgrounds, the STAR Collaboration performed a blind analysis of a large data sample of approximately 3.8 billion isobar collisions of $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr at $\sqrt{s_{\rm NN}}=200$ GeV. Prior to the blind analysis, the CME signatures are predefined as a significant excess of the CME-sensitive observables in Ru+Ru collisions over those in Zr+Zr collisions, owing to a larger magnetic field in the former. A precision down to 0.4% is achieved, as anticipated, in the relative magnitudes of the pertinent observables between the two isobar systems. Observed differences in the multiplicity and flow harmonics at the matching centrality indicate that the magnitude of the CME background is different between the two species. No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.
△ Less
Submitted 31 August, 2021;
originally announced September 2021.
-
Search for the chiral magnetic effect via charge-dependent azimuthal correlations relative to spectator and participant planes in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Authors:
STAR Collaboration,
M. S. Abdallah,
J. Adam,
L. Adamczyk,
J. R. Adams,
J. K. Adkins,
G. Agakishiev,
I. Aggarwal,
M. M. Aggarwal,
Z. Ahammed,
I. Alekseev,
D. M. Anderson,
A. Aparin,
E. C. Aschenauer,
M. U. Ashraf,
F. G. Atetalla,
A. Attri,
G. S. Averichev,
V. Bairathi,
W. Baker,
J. G. Ball Cap,
K. Barish,
A. Behera,
R. Bellwied,
P. Bhagat
, et al. (365 additional authors not shown)
Abstract:
The chiral magnetic effect (CME) refers to charge separation along a strong magnetic field due to imbalanced chirality of quarks in local parity and charge-parity violating domains in quantum chromodynamics. The experimental measurement of the charge separation is made difficult by the presence of a major background from elliptic azimuthal anisotropy. This background and the CME signal have differ…
▽ More
The chiral magnetic effect (CME) refers to charge separation along a strong magnetic field due to imbalanced chirality of quarks in local parity and charge-parity violating domains in quantum chromodynamics. The experimental measurement of the charge separation is made difficult by the presence of a major background from elliptic azimuthal anisotropy. This background and the CME signal have different sensitivities to the spectator and participant planes, and could thus be determined by measurements with respect to these planes. We report such measurements in Au+Au collisions at a nucleon-nucleon center-of-mass energy of 200 GeV at the Relativistic Heavy-Ion Collider. It is found that the charge separation, with the flow background removed, is consistent with zero in peripheral (large impact parameter) collisions. Some indication of finite CME signals is seen in mid-central (intermediate impact parameter) collisions. Significant residual background effects may, however, still be present.
△ Less
Submitted 17 September, 2022; v1 submitted 17 June, 2021;
originally announced June 2021.
-
Measurement of the Sixth-Order Cumulant of Net-Proton Multiplicity Distributions in Au+Au Collisions at $\sqrt{s_{\rm NN}}=$ 27, 54.4, and 200 GeV at RHIC
Authors:
STAR Collaboration,
M. S. Abdallah,
J. Adam,
L. Adamczyk,
J. R. Adams,
J. K. Adkins,
G. Agakishiev,
I. Aggarwal,
M. M. Aggarwal,
Z. Ahammed,
I. Alekseev,
D. M. Anderson,
A. Aparin,
E. C. Aschenauer,
M. U. Ashraf,
F. G. Atetalla,
A. Attri,
G. S. Averichev,
V. Bairathi,
W. Baker,
J. G. Ball Cap,
K. Barish,
A. Behera,
R. Bellwied,
P. Bhagat
, et al. (369 additional authors not shown)
Abstract:
According to first principle Lattice QCD calculations, the transition from quark-gluon plasma to hadronic matter is a smooth crossover in the region $μ_{\rm B}\leq T_{c}$. In this range the ratio, $C_{6}/C_{2}$, of net-baryon distributions are predicted to be negative. In this paper, we report the first measurement of the midrapidity net-proton $C_{6}/C_{2}$ from 27, 54.4 and 200 GeV Au+Au collisi…
▽ More
According to first principle Lattice QCD calculations, the transition from quark-gluon plasma to hadronic matter is a smooth crossover in the region $μ_{\rm B}\leq T_{c}$. In this range the ratio, $C_{6}/C_{2}$, of net-baryon distributions are predicted to be negative. In this paper, we report the first measurement of the midrapidity net-proton $C_{6}/C_{2}$ from 27, 54.4 and 200 GeV Au+Au collisions at RHIC. The dependence on collision centrality and kinematic acceptance in ($p_{T}$, $y$) are analyzed. While for 27 and 54.4 GeV collisions the $C_{6}/C_{2}$ values are close to zero within uncertainties, it is observed that for 200 GeV collisions, the $C_{6}/C_{2}$ ratio becomes progressively negative from peripheral to central collisions. Transport model calculations without critical dynamics predict mostly positive values except for the most central collisions within uncertainties. These observations seem to favor a smooth crossover in the high energy nuclear collisions at top RHIC energy.
△ Less
Submitted 21 December, 2021; v1 submitted 31 May, 2021;
originally announced May 2021.
-
Discovery of higher order QED effect for the vacuum pair production
Authors:
Wangmei Zha,
Zebo Tang
Abstract:
The higher order quantum electrodynamics (QED) effect for vacuum pair production has been searched without success since 1954. In this paper, we show that the lowest order QED calculations for lepton pair vacuum production in heavy-ion collisions are about 20$\%$ higher than the combined world-wide data with a seven sigma-level of significance and the corresponding higher order QED results are con…
▽ More
The higher order quantum electrodynamics (QED) effect for vacuum pair production has been searched without success since 1954. In this paper, we show that the lowest order QED calculations for lepton pair vacuum production in heavy-ion collisions are about 20$\%$ higher than the combined world-wide data with a seven sigma-level of significance and the corresponding higher order QED results are consistent with data. We claim the discovery of higher order effect for the QED pair production, which settles the dust of previous debates for several decades. The verification of higher order QED effect is a fundamental scientific problem, which is an important milestone towards the nonperturbative and nonlinear regime of QED vacuum.
△ Less
Submitted 8 March, 2021;
originally announced March 2021.
-
Cumulants and Correlation Functions of Net-proton, Proton and Antiproton Multiplicity Distributions in Au+Au Collisions at energies available at the BNL Relativistic Heavy Ion Collider
Authors:
STAR Collaboration,
M. S. Abdallah,
J. Adam,
L. Adamczyk,
J. R. Adams,
J. K. Adkins,
G. Agakishiev,
I. Aggarwal,
M. M. Aggarwal,
Z. Ahammed,
I. Alekseev,
D. M. Anderson,
A. Aparin,
E. C. Aschenauer,
M. U. Ashraf,
F. G. Atetalla,
A. Attri,
G. S. Averichev,
V. Bairathi,
W. Baker,
J. G. Ball Cap,
K. Barish,
A. Behera,
R. Bellwied,
P. Bhagat
, et al. (367 additional authors not shown)
Abstract:
We report a systematic measurement of cumulants, $C_{n}$, for net-proton, proton and antiproton multiplicity distributions, and correlation functions, $κ_n$, for proton and antiproton multiplicity distributions up to the fourth order in Au+Au collisions at $\sqrt{s_{\mathrm {NN}}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The $C_{n}$ and $κ_n$ are presented as a function of collisi…
▽ More
We report a systematic measurement of cumulants, $C_{n}$, for net-proton, proton and antiproton multiplicity distributions, and correlation functions, $κ_n$, for proton and antiproton multiplicity distributions up to the fourth order in Au+Au collisions at $\sqrt{s_{\mathrm {NN}}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The $C_{n}$ and $κ_n$ are presented as a function of collision energy, centrality and kinematic acceptance in rapidity, $y$, and transverse momentum, $p_{T}$. The data were taken during the first phase of the Beam Energy Scan (BES) program (2010 -- 2017) at the BNL Relativistic Heavy Ion Collider (RHIC) facility. The measurements are carried out at midrapidity ($|y| <$ 0.5) and transverse momentum 0.4 $<$ $p_{\rm T}$ $<$ 2.0 GeV/$c$, using the STAR detector at RHIC. We observe a non-monotonic energy dependence ($\sqrt{s_{\mathrm {NN}}}$ = 7.7 -- 62.4 GeV) of the net-proton $C_{4}$/$C_{2}$ with the significance of 3.1$σ$ for the 0-5\% central Au+Au collisions. This is consistent with the expectations of critical fluctuations in a QCD-inspired model. Thermal and transport model calculations show a monotonic variation with $\sqrt{s_{\mathrm {NN}}}$. For the multiparticle correlation functions, we observe significant negative values for a two-particle correlation function, $κ_2$, of protons and antiprotons, which are mainly due to the effects of baryon number conservation. Furthermore, it is found that the four-particle correlation function, $κ_4$, of protons plays a role in determining the energy dependence of proton $C_4/C_1$ below 19.6 GeV, which cannot be understood by the effect of baryon number conservation.
△ Less
Submitted 7 August, 2021; v1 submitted 29 January, 2021;
originally announced January 2021.
-
First branching fraction measurement of the suppressed decay $Ξ_c^0\to π^-Λ_c^+$
Authors:
LHCb collaboration,
R. Aaij,
C. Abellán Beteta,
T. Ackernley,
B. Adeva,
M. Adinolfi,
H. Afsharnia,
C. A. Aidala,
S. Aiola,
Z. Ajaltouni,
S. Akar,
J. Albrecht,
F. Alessio,
M. Alexander,
A. Alfonso Albero,
Z. Aliouche,
G. Alkhazov,
P. Alvarez Cartelle,
S. Amato,
Y. Amhis,
L. An,
L. Anderlini,
G. Andreassi,
A. Andreianov,
M. Andreotti
, et al. (948 additional authors not shown)
Abstract:
The $Ξ_c^0$ baryon is unstable and usually decays into charmless final states by the $c \to s u\overline{d}$ transition. It can, however, also disintegrate into a $π^-$ meson and a $Λ_c^+$ baryon via $s$ quark decay or via $cs\to d c$ weak scattering. The interplay between the latter two processes governs the size of the branching fraction ${\cal{B}}$$(Ξ_c^0\to π^-Λ_c^+)$, first measured here to b…
▽ More
The $Ξ_c^0$ baryon is unstable and usually decays into charmless final states by the $c \to s u\overline{d}$ transition. It can, however, also disintegrate into a $π^-$ meson and a $Λ_c^+$ baryon via $s$ quark decay or via $cs\to d c$ weak scattering. The interplay between the latter two processes governs the size of the branching fraction ${\cal{B}}$$(Ξ_c^0\to π^-Λ_c^+)$, first measured here to be $(0.55\pm 0.02 \pm 0.18)$%, where the first uncertainty is statistical and second systematic. This result is compatible with the larger of the theoretical predictions that connect models of hyperon decays using partially conserved axial currents and SU(3) symmetry with those involving the heavy-quark expansion and heavy-quark symmetry. In addition, the branching fraction of the normalization channel, ${\cal{B}}(Ξ_c^+\to p K^- π^+) = (1.135 \pm 0.002 \pm 0.387)$% is measured.
△ Less
Submitted 11 September, 2020; v1 submitted 23 July, 2020;
originally announced July 2020.
-
Exploring the double-slit interference with linearly polarized photons
Authors:
Wangmei Zha,
James Daniel Brandenburg,
Lijuan Ruan,
Zebo Tang,
Zhangbu Xu
Abstract:
The linearly polarized quasi-real photons from the highly Lorentz-contracted Coulomb fields of relativistic heavy ions can fluctuate to quark-antiquark pairs, scatter off a target nucleus and emerge as vector mesons. In the process, the two colliding nuclei can switch roles to act as photon emitter or target, forming a double-slit interference pattern. The product from photoproduction inherits the…
▽ More
The linearly polarized quasi-real photons from the highly Lorentz-contracted Coulomb fields of relativistic heavy ions can fluctuate to quark-antiquark pairs, scatter off a target nucleus and emerge as vector mesons. In the process, the two colliding nuclei can switch roles to act as photon emitter or target, forming a double-slit interference pattern. The product from photoproduction inherits the photon polarization states, leading to the asymmetries of the decay angular distributions. In this letter, we study the interference effect in polarization dimension from the asymmetries of the decay angular distributions for photoprodution in heavy-ion collisions and find a periodic oscillation with the transverse momentum of vector meson, which could reasonably explain the transverse momentum dependence of the 2nd-order modulation in azimuth for the $ρ^{0}$ decay observed by the STAR collaboration.
△ Less
Submitted 22 June, 2020;
originally announced June 2020.
-
Acoplanarity of QED pairs accompanied by nuclear dissociation in ultra-peripheral heavy ion collisions
Authors:
James Daniel Brandenburg,
Wei Li,
Lijuan Ruan,
Zebo Tang,
Zhangbu Xu,
Shuai Yang,
Wangmei Zha
Abstract:
This paper investigates the transverse momentum broadening effect for electromagnetic production of dileptons in ultra-peripheral heavy ion collisions accompanied by nuclear dissociation. The electromagnetic dissociation probability of nuclei for different neutron multiplicities is estimated, which could serve as a centrality definition (i.e. impact parameter estimate) in ultra-peripheral collisio…
▽ More
This paper investigates the transverse momentum broadening effect for electromagnetic production of dileptons in ultra-peripheral heavy ion collisions accompanied by nuclear dissociation. The electromagnetic dissociation probability of nuclei for different neutron multiplicities is estimated, which could serve as a centrality definition (i.e. impact parameter estimate) in ultra-peripheral collisions. In the framework of lowest-order QED, the acoplanarity of dilepton pairs is calculated for different neutron emission scenarios in ultra-peripheral collisions, indicating significant impact-parameter dependence. The verification of impact-parameter dependence is crucially important to understand the broadening effect observed in hadronic heavy-ion collisions.
△ Less
Submitted 12 June, 2020;
originally announced June 2020.
-
Quarkonium production: An experimental overview
Authors:
Zebo Tang
Abstract:
Quarkonium has been proposed as a sensitive probe of quark-gluon plasma (QGP) more than thirty years ago. Since then, lots of experimental efforts have been devoted to study its production in heavy-ion collisions to search for QGP and study its properties and significant progresses have been made. In this paper, an overview of recent experimental results on charmonium and bottomonium production in…
▽ More
Quarkonium has been proposed as a sensitive probe of quark-gluon plasma (QGP) more than thirty years ago. Since then, lots of experimental efforts have been devoted to study its production in heavy-ion collisions to search for QGP and study its properties and significant progresses have been made. In this paper, an overview of recent experimental results on charmonium and bottomonium production in heavy-ion collisions as well as in small systems are presented. Furthermore, the results on exotic particle X(3872) production in Pb+Pb and p+p collisions are also discussed.
△ Less
Submitted 26 April, 2020; v1 submitted 25 February, 2020;
originally announced February 2020.
-
Beam energy dependence of net-$Λ$ fluctuations measured by the STAR experiment at RHIC
Authors:
STAR Collaboration,
J. Adam,
L. Adamczyk,
J. R. Adams,
J. K. Adkins,
G. Agakishiev,
M. M. Aggarwal,
Z. Ahammed,
I. Alekseev,
D. M. Anderson,
A. Aparin,
E. C. Aschenauer,
M. U. Ashraf,
F. G. Atetalla,
A. Attri,
G. S. Averichev,
V. Bairathi,
K. Barish,
A. Behera,
R. Bellwied,
A. Bhasin,
J. Bielcik,
J. Bielcikova,
L. C. Bland,
I. G. Bordyuzhin
, et al. (334 additional authors not shown)
Abstract:
The measurements of particle multiplicity distributions have generated considerable interest in understanding the fluctuations of conserved quantum numbers in the Quantum Chromodynamics (QCD) hadronization regime, in particular near a possible critical point and near the chemical freeze-out. We report the measurement of efficiency and centrality bin width corrected cumulant ratios ($C_{2}/C_{1}$,…
▽ More
The measurements of particle multiplicity distributions have generated considerable interest in understanding the fluctuations of conserved quantum numbers in the Quantum Chromodynamics (QCD) hadronization regime, in particular near a possible critical point and near the chemical freeze-out. We report the measurement of efficiency and centrality bin width corrected cumulant ratios ($C_{2}/C_{1}$, $C_{3}/C_{2}$) of net-$Λ$ distributions, in the context of both strangeness and baryon number conservation, as a function of collision energy, centrality and rapidity. The results are for Au + Au collisions at five beam energies ($\sqrt{s_{NN}}$ = 19.6, 27, 39, 62.4 and 200 GeV) recorded with the Solenoidal Tracker at RHIC (STAR). We compare our results to the Poisson and negative binomial (NBD) expectations, as well as to Ultra-relativistic Quantum Molecular Dynamics (UrQMD) and Hadron Resonance Gas (HRG) model predictions. Both NBD and Poisson baselines agree with data within the statistical and systematic uncertainties. The ratios of the measured cumulants show no features of critical fluctuations. The chemical freeze-out temperatures extracted from a recent HRG calculation, which was successfully used to describe the net-proton, net-kaon and net-charge data, indicate $Λ$ freeze-out conditions similar to those of kaons. However, large deviations are found when comparing to temperatures obtained from net-proton fluctuations. The net-$Λ$ cumulants show a weak, but finite, dependence on the rapidity coverage in the acceptance of the detector, which can be attributed to quantum number conservation.
△ Less
Submitted 17 January, 2020;
originally announced January 2020.
-
Non-monotonic energy dependence of net-proton number fluctuations
Authors:
STAR Collaboration,
J. Adam,
L. Adamczyk,
J. R. Adams,
J. K. Adkins,
G. Agakishiev,
M. M. Aggarwal,
Z. Ahammed,
I. Alekseev,
D. M. Anderson,
A. Aparin,
E. C. Aschenauer,
M. U. Ashraf,
F. G. Atetalla,
A. Attri,
G. S. Averichev,
V. Bairathi,
K. Barish,
A. Behera,
R. Bellwied,
A. Bhasin,
J. Bielcik,
J. Bielcikova,
L. C. Bland,
I. G. Bordyuzhin
, et al. (334 additional authors not shown)
Abstract:
Non-monotonic variation with collision energy ($\sqrt{s_{\rm NN}}$) of the moments of the net-baryon number distribution in heavy-ion collisions, related to the correlation length and the susceptibilities of the system, is suggested as a signature for the Quantum Chromodynamics (QCD) critical point. We report the first evidence of a non-monotonic variation in kurtosis times variance of the net-pro…
▽ More
Non-monotonic variation with collision energy ($\sqrt{s_{\rm NN}}$) of the moments of the net-baryon number distribution in heavy-ion collisions, related to the correlation length and the susceptibilities of the system, is suggested as a signature for the Quantum Chromodynamics (QCD) critical point. We report the first evidence of a non-monotonic variation in kurtosis times variance of the net-proton number (proxy for net-baryon number) distribution as a function of \rootsnn with 3.1$σ$ significance, for head-on (central) gold-on-gold (Au+Au) collisions measured using the STAR detector at RHIC. Data in non-central Au+Au collisions and models of heavy-ion collisions without a critical point show a monotonic variation as a function of $\sqrt{s_{\rm NN}}$.
△ Less
Submitted 12 October, 2021; v1 submitted 9 January, 2020;
originally announced January 2020.
-
First observation of excited $Ω_b^-$ states
Authors:
LHCb collaboration,
R. Aaij,
C. Abellán Beteta,
T. Ackernley,
B. Adeva,
M. Adinolfi,
H. Afsharnia,
C. A. Aidala,
S. Aiola,
Z. Ajaltouni,
S. Akar,
P. Albicocco,
J. Albrecht,
F. Alessio,
M. Alexander,
A. Alfonso Albero,
G. Alkhazov,
P. Alvarez Cartelle,
A. A. Alves Jr,
S. Amato,
Y. Amhis,
L. An,
L. Anderlini,
G. Andreassi,
M. Andreotti
, et al. (883 additional authors not shown)
Abstract:
We report four narrow peaks in the $Ξ_b^0K^-$ mass spectrum obtained using $pp$ collisions at center-of-mass energies of 7, 8 and 13 TeV, corresponding to a total integrated luminosity of 9 fb$^{-1}$ recorded by the LHCb experiment. Referring to these states by their mass, the mass values are \begin{align*} m(Ω_b(6316)^-) &= 6315.64\pm0.31\pm0.07\pm0.50 {\rm MeV}, \\ m(Ω_b(6330)^-) &= 6330.30\pm0.…
▽ More
We report four narrow peaks in the $Ξ_b^0K^-$ mass spectrum obtained using $pp$ collisions at center-of-mass energies of 7, 8 and 13 TeV, corresponding to a total integrated luminosity of 9 fb$^{-1}$ recorded by the LHCb experiment. Referring to these states by their mass, the mass values are \begin{align*} m(Ω_b(6316)^-) &= 6315.64\pm0.31\pm0.07\pm0.50 {\rm MeV}, \\ m(Ω_b(6330)^-) &= 6330.30\pm0.28\pm0.07\pm0.50 {\rm MeV}, \\ m(Ω_b(6340)^-) &= 6339.71\pm0.26\pm0.05\pm0.50 {\rm MeV}, \\ m(Ω_b(6350)^-) &= 6349.88\pm0.35\pm0.05\pm0.50 {\rm MeV}, \end{align*}where the uncertainties are statistical, systematic and the last is due to the knowledge of the $Ξ_b^0$ mass. The natural widths of the three lower mass states are consistent with zero, and the 90% confidence-level upper limits are determined to be ${Γ(Ω_b(6316)^-)<2.8}$ MeV, ${Γ(Ω_b(6330)^-)<3.1}$ MeV and ${Γ(Ω_b(6340)^-)<1.5}$ MeV. The natural width of the $Ω_b(6350)^-$ peak is $1.4^{+1.0}_{-0.8}\pm0.1$ MeV, which is 2.5$σ$ from zero and corresponds to an upper limit of 2.8 MeV. The peaks have local significances ranging from 3.6$σ$ to 7.2$σ$. After accounting for the look-elsewhere effect, the significances of the $Ω_b(6316)^-$ and $Ω_b(6330)^-$ peaks are reduced to 2.1$σ$ and 2.6$σ$ respectively, while the two higher mass peaks exceed 5$σ$. The observed peaks are consistent with expectations for excited $Ω_b^-$ resonances.
△ Less
Submitted 25 February, 2020; v1 submitted 3 January, 2020;
originally announced January 2020.
-
Isospin amplitudes in $Λ_b^0\to J/ψΛ(Σ^0)$ and $Ξ_b^0\to J/ψΞ^0(Λ)$ decays
Authors:
LHCb collaboration,
R. Aaij,
C. Abellán Beteta,
T. Ackernley,
B. Adeva,
M. Adinolfi,
H. Afsharnia,
C. A. Aidala,
S. Aiola,
Z. Ajaltouni,
S. Akar,
P. Albicocco,
J. Albrecht,
F. Alessio,
M. Alexander,
A. Alfonso Albero,
G. Alkhazov,
P. Alvarez Cartelle,
A. A. Alves Jr,
S. Amato,
Y. Amhis,
L. An,
L. Anderlini,
G. Andreassi,
M. Andreotti
, et al. (884 additional authors not shown)
Abstract:
Ratios of isospin amplitudes in hadron decays are a useful probe of the interplay between weak and strong interactions, and allow searches for physics beyond the Standard Model. We present the first results on isospin amplitudes in $b$-baryon decays, using data corresponding to an integrated luminosity of 8.5 fb$^{-1}$, collected with the LHCb detector in $pp$ collisions at center of mass energies…
▽ More
Ratios of isospin amplitudes in hadron decays are a useful probe of the interplay between weak and strong interactions, and allow searches for physics beyond the Standard Model. We present the first results on isospin amplitudes in $b$-baryon decays, using data corresponding to an integrated luminosity of 8.5 fb$^{-1}$, collected with the LHCb detector in $pp$ collisions at center of mass energies of 7, 8 and 13 TeV. The isospin amplitude ratio $|A_1(Λ_b^0\to J/ψΣ^0)/A_0(Λ_b^0\to J/ψΛ)|$, where the subscript on $A$ indicates the final-state isospin, is measured to be less than 1/21.8 at 95\% confidence level. The Cabibbo suppressed $Ξ_b^0\to J/ψΛ$ decay is observed for the first time, allowing for the measurement $|A_0(Ξ_b^0\to J/ψΛ)/A_{1/2}(Ξ_b^0\to J/ψΞ^0)| =0.37 \pm 0.06\pm 0.02$, where the uncertainties are statistical and systematic, respectively.
△ Less
Submitted 18 March, 2020; v1 submitted 4 December, 2019;
originally announced December 2019.
-
Measurement of the $B_c^-$ meson production fraction and asymmetry in 7 and 13 TeV $pp$ collisions
Authors:
LHCb collaboration,
R. Aaij,
C. Abellán Beteta,
T. Ackernley,
B. Adeva,
M. Adinolfi,
H. Afsharnia,
C. A. Aidala,
S. Aiola,
Z. Ajaltouni,
S. Akar,
P. Albicocco,
J. Albrecht,
F. Alessio,
M. Alexander,
A. Alfonso Albero,
G. Alkhazov,
P. Alvarez Cartelle,
A. A. Alves Jr,
S. Amato,
Y. Amhis,
L. An,
L. Anderlini,
G. Andreassi,
M. Andreotti
, et al. (882 additional authors not shown)
Abstract:
The production fraction of the $B_c^-$ meson with respect to the sum of $B^-$ and $\bar{B}^0$ mesons is measured in both 7 and 13 TeV center-of-mass energy $pp$ collisions produced by the Large Hadron Collider (LHC), using the LHCb detector. The rate, approximately 3.7 per mille, does not change with energy, but shows a transverse momentum dependence. The $B_c^- - B_c^+$ production asymmetry is al…
▽ More
The production fraction of the $B_c^-$ meson with respect to the sum of $B^-$ and $\bar{B}^0$ mesons is measured in both 7 and 13 TeV center-of-mass energy $pp$ collisions produced by the Large Hadron Collider (LHC), using the LHCb detector. The rate, approximately 3.7 per mille, does not change with energy, but shows a transverse momentum dependence. The $B_c^- - B_c^+$ production asymmetry is also measured, and is consistent with zero within the determined statistical and systematic uncertainties of a few percent.
△ Less
Submitted 18 December, 2019; v1 submitted 29 October, 2019;
originally announced October 2019.
-
Bulk Properties of the System Formed in Au+Au Collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV
Authors:
STAR Collaboration,
J. Adam,
L. Adamczyk,
J. R. Adams,
J. K. Adkins,
G. Agakishiev,
M. M. Aggarwal,
Z. Ahammed,
I. Alekseev,
D. M. Anderson,
R. Aoyama,
A. Aparin,
E. C. Aschenauer,
M. U. Ashraf,
F. G. Atetalla,
A. Attri,
G. S. Averichev,
V. Bairathi,
K. Barish,
A. J. Bassill,
A. Behera,
R. Bellwied,
A. Bhasin,
A. K. Bhati,
J. Bielcik
, et al. (324 additional authors not shown)
Abstract:
We report systematic measurements of bulk properties of the system created in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC).The transverse momentum spectra of $π^{\pm}$, $K^{\pm}$ and $p(\bar{p})$ are studied at mid-rapidity ($|y| < 0.1$) for nine centrality intervals. The centrality, transverse momentum ($p_T$),…
▽ More
We report systematic measurements of bulk properties of the system created in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC).The transverse momentum spectra of $π^{\pm}$, $K^{\pm}$ and $p(\bar{p})$ are studied at mid-rapidity ($|y| < 0.1$) for nine centrality intervals. The centrality, transverse momentum ($p_T$),and pseudorapidity ($η$) dependence of inclusive charged particle elliptic flow ($v_2$), and rapidity-odd charged particles directed flow ($v_{1}$) results near mid-rapidity are also presented. These measurements are compared with the published results from Au+Au collisions at other energies, and from Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV. The results at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV show similar behavior as established at other energies and fit well in the energy dependence trend. These results are important as the 14.5 GeV energy fills the gap in $μ_B$, which is of the order of 100 MeV,between $\sqrt{s_{\mathrm{NN}}}$ =11.5 and 19.6 GeV. Comparisons of the data with UrQMD and AMPT models show poor agreement in general.
△ Less
Submitted 9 August, 2019;
originally announced August 2019.
-
Precision measurement of the $Λ_c^+$, $Ξ_c^+$ and $Ξ_c^0$ baryon lifetimes
Authors:
LHCb collaboration,
R. Aaij,
C. Abellán Beteta,
B. Adeva,
M. Adinolfi,
C. A. Aidala,
Z. Ajaltouni,
S. Akar,
P. Albicocco,
J. Albrecht,
F. Alessio,
M. Alexander,
A. Alfonso Albero,
G. Alkhazov,
P. Alvarez Cartelle,
A. A. Alves Jr,
S. Amato,
Y. Amhis,
L. An,
L. Anderlini,
G. Andreassi,
M. Andreotti,
J. E. Andrews,
F. Archilli,
J. Arnau Romeu
, et al. (827 additional authors not shown)
Abstract:
We report measurements of the lifetimes of the $Λ_c^+$, $Ξ_c^+$ and $Ξ_c^0$ charm baryons using proton-proton collision data at center-of-mass energies of 7 and 8\tev, corresponding to an integrated luminosity of 3.0 fb$^{-1}$, collected by the LHCb experiment. The charm baryons are reconstructed through the decays $Λ_c^+\to pK^-π^+$, $Ξ_c^+\to pK^-π^+$ and $Ξ_c^0\to pK^-K^-π^+$, and originate fro…
▽ More
We report measurements of the lifetimes of the $Λ_c^+$, $Ξ_c^+$ and $Ξ_c^0$ charm baryons using proton-proton collision data at center-of-mass energies of 7 and 8\tev, corresponding to an integrated luminosity of 3.0 fb$^{-1}$, collected by the LHCb experiment. The charm baryons are reconstructed through the decays $Λ_c^+\to pK^-π^+$, $Ξ_c^+\to pK^-π^+$ and $Ξ_c^0\to pK^-K^-π^+$, and originate from semimuonic decays of beauty baryons. The lifetimes are measured relative to that of the $D^+$ meson, and are determined to be \begin{align*}
τ_{Λ_c^+} &= 203.5\pm1.0\pm1.3\pm1.4~{\rm fs}, \newline
τ_{Ξ_c^+} &= 456.8\pm3.5\pm2.9\pm3.1~{\rm fs}, \newline
τ_{Ξ_c^0} &= 154.5\pm1.7\pm1.6\pm1.0~{\rm fs}, \end{align*} where the uncertainties are statistical, systematic, and due to the uncertainty in the $D^+$ lifetime. The measurements are approximately 3--4 times more precise than the current world average values. The $Λ_c^+$ and $Ξ_c^+$ lifetimes are in agreement with previous measurements; however, the $Ξ_c^0$ baryon lifetime is approximately 3.3 standard deviations larger than the world average value.
△ Less
Submitted 2 August, 2019; v1 submitted 19 June, 2019;
originally announced June 2019.