-
SRPO: Self-Referential Policy Optimization for Vision-Language-Action Models
Authors:
Senyu Fei,
Siyin Wang,
Li Ji,
Ao Li,
Shiduo Zhang,
Liming Liu,
Jinlong Hou,
Jingjing Gong,
Xianzhong Zhao,
Xipeng Qiu
Abstract:
Vision-Language-Action (VLA) models excel in robotic manipulation but are constrained by their heavy reliance on expert demonstrations, leading to demonstration bias and limiting performance. Reinforcement learning (RL) is a vital post-training strategy to overcome these limits, yet current VLA-RL methods, including group-based optimization approaches, are crippled by severe reward sparsity. Relyi…
▽ More
Vision-Language-Action (VLA) models excel in robotic manipulation but are constrained by their heavy reliance on expert demonstrations, leading to demonstration bias and limiting performance. Reinforcement learning (RL) is a vital post-training strategy to overcome these limits, yet current VLA-RL methods, including group-based optimization approaches, are crippled by severe reward sparsity. Relying on binary success indicators wastes valuable information in failed trajectories, resulting in low training efficiency. To solve this, we propose Self-Referential Policy Optimization (SRPO), a novel VLA-RL framework. SRPO eliminates the need for external demonstrations or manual reward engineering by leveraging the model's own successful trajectories, generated within the current training batch, as a self-reference. This allows us to assign a progress-wise reward to failed attempts. A core innovation is the use of latent world representations to measure behavioral progress robustly. Instead of relying on raw pixels or requiring domain-specific fine-tuning, we utilize the compressed, transferable encodings from a world model's latent space. These representations naturally capture progress patterns across environments, enabling accurate, generalized trajectory comparison. Empirical evaluations on the LIBERO benchmark demonstrate SRPO's efficiency and effectiveness. Starting from a supervised baseline with 48.9% success, SRPO achieves a new state-of-the-art success rate of 99.2% in just 200 RL steps, representing a 103% relative improvement without any extra supervision. Furthermore, SRPO shows substantial robustness, achieving a 167% performance improvement on the LIBERO-Plus benchmark.
△ Less
Submitted 19 November, 2025;
originally announced November 2025.
-
CompTrack: Information Bottleneck-Guided Low-Rank Dynamic Token Compression for Point Cloud Tracking
Authors:
Sifan Zhou,
Yichao Cao,
Jiahao Nie,
Yuqian Fu,
Ziyu Zhao,
Xiaobo Lu,
Shuo Wang
Abstract:
3D single object tracking (SOT) in LiDAR point clouds is a critical task in computer vision and autonomous driving. Despite great success having been achieved, the inherent sparsity of point clouds introduces a dual-redundancy challenge that limits existing trackers: (1) vast spatial redundancy from background noise impairs accuracy, and (2) informational redundancy within the foreground hinders e…
▽ More
3D single object tracking (SOT) in LiDAR point clouds is a critical task in computer vision and autonomous driving. Despite great success having been achieved, the inherent sparsity of point clouds introduces a dual-redundancy challenge that limits existing trackers: (1) vast spatial redundancy from background noise impairs accuracy, and (2) informational redundancy within the foreground hinders efficiency. To tackle these issues, we propose CompTrack, a novel end-to-end framework that systematically eliminates both forms of redundancy in point clouds. First, CompTrack incorporates a Spatial Foreground Predictor (SFP) module to filter out irrelevant background noise based on information entropy, addressing spatial redundancy. Subsequently, its core is an Information Bottleneck-guided Dynamic Token Compression (IB-DTC) module that eliminates the informational redundancy within the foreground. Theoretically grounded in low-rank approximation, this module leverages an online SVD analysis to adaptively compress the redundant foreground into a compact and highly informative set of proxy tokens. Extensive experiments on KITTI, nuScenes and Waymo datasets demonstrate that CompTrack achieves top-performing tracking performance with superior efficiency, running at a real-time 90 FPS on a single RTX 3090 GPU.
△ Less
Submitted 19 November, 2025;
originally announced November 2025.
-
Taxonomy, Evaluation and Exploitation of IPI-Centric LLM Agent Defense Frameworks
Authors:
Zimo Ji,
Xunguang Wang,
Zongjie Li,
Pingchuan Ma,
Yudong Gao,
Daoyuan Wu,
Xincheng Yan,
Tian Tian,
Shuai Wang
Abstract:
Large Language Model (LLM)-based agents with function-calling capabilities are increasingly deployed, but remain vulnerable to Indirect Prompt Injection (IPI) attacks that hijack their tool calls. In response, numerous IPI-centric defense frameworks have emerged. However, these defenses are fragmented, lacking a unified taxonomy and comprehensive evaluation. In this Systematization of Knowledge (S…
▽ More
Large Language Model (LLM)-based agents with function-calling capabilities are increasingly deployed, but remain vulnerable to Indirect Prompt Injection (IPI) attacks that hijack their tool calls. In response, numerous IPI-centric defense frameworks have emerged. However, these defenses are fragmented, lacking a unified taxonomy and comprehensive evaluation. In this Systematization of Knowledge (SoK), we present the first comprehensive analysis of IPI-centric defense frameworks. We introduce a comprehensive taxonomy of these defenses, classifying them along five dimensions. We then thoroughly assess the security and usability of representative defense frameworks. Through analysis of defensive failures in the assessment, we identify six root causes of defense circumvention. Based on these findings, we design three novel adaptive attacks that significantly improve attack success rates targeting specific frameworks, demonstrating the severity of the flaws in these defenses. Our paper provides a foundation and critical insights for the future development of more secure and usable IPI-centric agent defense frameworks.
△ Less
Submitted 19 November, 2025;
originally announced November 2025.
-
CoroAMU: Unleashing Memory-Driven Coroutines through Latency-Aware Decoupled Operations
Authors:
Zhuolun Jiang,
Songyue Wang,
Xiaokun Pei,
Tianyue Lu,
Mingyu Chen
Abstract:
Modern data-intensive applications face memory latency challenges exacerbated by disaggregated memory systems. Recent work shows that coroutines are promising in effectively interleaving tasks and hiding memory latency, but they struggle to balance latency-hiding efficiency with runtime overhead. We present CoroAMU, a hardware-software co-designed system for memory-centric coroutines. It introduce…
▽ More
Modern data-intensive applications face memory latency challenges exacerbated by disaggregated memory systems. Recent work shows that coroutines are promising in effectively interleaving tasks and hiding memory latency, but they struggle to balance latency-hiding efficiency with runtime overhead. We present CoroAMU, a hardware-software co-designed system for memory-centric coroutines. It introduces compiler procedures that optimize coroutine code generation, minimize context, and coalesce requests, paired with a simple interface. With hardware support of decoupled memory operations, we enhance the Asynchronous Memory Unit to further exploit dynamic coroutine schedulers by coroutine-specific memory operations and a novel memory-guided branch prediction mechanism. It is implemented with LLVM and open-source XiangShan RISC-V processor over the FPGA platform. Experiments demonstrate that the CoroAMU compiler achieves a 1.51x speedup over state-of-the-art coroutine methods on Intel server processors. When combined with optimized hardware of decoupled memory access, it delivers 3.39x and 4.87x average performance improvements over the baseline processor on FPGA-emulated disaggregated systems under 200ns and 800ns latency respectively.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
CLO: Efficient LLM Inference System with CPU-Light KVCache Offloading via Algorithm-System Co-Design
Authors:
Jiawei Yi,
Ping Gong,
Youhui Bai,
Jiaqi Ruan,
Shengnan Wang,
Pengcheng Wang,
Haibo Wang,
Weiguang Wang,
Xia Zhu,
Feng Wu,
Cheng Li
Abstract:
The growth of million-token LLMs exposes the scalability limits of inference systems, where the KVCache dominates memory usage and data transfer overhead. Recent offloading systems migrate the KVCache to CPU memory and incorporate top-k attention to reduce the volume of data transferred from the CPU, while further applying system-level optimizations such as on-GPU caching and prefetching to lower…
▽ More
The growth of million-token LLMs exposes the scalability limits of inference systems, where the KVCache dominates memory usage and data transfer overhead. Recent offloading systems migrate the KVCache to CPU memory and incorporate top-k attention to reduce the volume of data transferred from the CPU, while further applying system-level optimizations such as on-GPU caching and prefetching to lower transfer overhead. However, they overlook the CPU bottleneck in three aspects: (1) substantial overhead of fine-grained dynamic cache management performed on the CPU side, (2) significant transfer overhead from poor PCIe bandwidth utilization caused by heavy gathering operations at the CPU side, and (3) GPU runtime bubbles introduced by coarse-grained CPU-centric synchronization. To address these challenges, we propose CLO, a CPU-light KVCache offloading system via algorithm-system co-design. CLO features: (1) a coarse-grained head-wise approximate on-GPU caching strategy with negligible cache management cost, (2) seamless combination of data prefetching and on-GPU persistent caching for lower transfer overhead, (3) a zero-copy transfer engine to fully exploit PCIe bandwidth, and a GPU-centric synchronization method to eliminate GPU stalls. Evaluation on two widely-used LLMs demonstrates that CLO achieves comparable accuracy to state-of-the-art systems, while substantially minimizing CPU overhead, fully utilizing PCIe bandwidth, thus improving decoding throughput by 9.3%-66.6%. Our results highlight that algorithm-system co-design is essential for memory-constrained LLM inference on modern GPU platforms. We open source CLO at https://github.com/CommediaJW/CLO.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
PACEE: Supporting Children's Personal Emotion Education through Parent-AI Collaboration
Authors:
Yu Mei,
Xutong Wang,
Ziyao Zhang,
Yiming Fu,
Shiyi Wang,
Qingyang Wan,
Qinghuan Lan,
Chang Liu,
Jie Cai,
Chun Yu,
Yuanchun Shi
Abstract:
Emotion education is a crucial lesson for children aged 3 to 6. However, existing technologies primarily focus on promoting emotion education from the child's perspective, often neglecting the central role of parents in guiding early childhood emotion development. In this work, we conducted co-design sessions with five experienced kindergarten teachers and five parents to identify parental challen…
▽ More
Emotion education is a crucial lesson for children aged 3 to 6. However, existing technologies primarily focus on promoting emotion education from the child's perspective, often neglecting the central role of parents in guiding early childhood emotion development. In this work, we conducted co-design sessions with five experienced kindergarten teachers and five parents to identify parental challenges and the roles that AI can play in family emotion education. Guided by these insights, we developed PACEE, an assistant for supporting parent-AI collaborative emotion education. PACEE enables parents to engage in emotional dialogues about common scenarios, with multiple forms of support provided by generative AI. It combines insights from parents and AI to model children's emotional states and collaboratively delivers personalized, parent-mediated guidance. In a user study involving 16 families, we found that PACEE significantly enhances parent-child engagement, encourages more in-depth emotional communication, and improves the parental experience. Our findings advance emotion coaching theory in both family settings and LLM-assisted contexts, offering valuable insights for designing AI-supported, parent-centered family education systems.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
Enforcing hidden physics in physics-informed neural networks
Authors:
Nanxi Chen,
Sifan Wang,
Rujin Ma,
Airong Chen,
Chuanjie Cui
Abstract:
Physics-informed neural networks (PINNs) represent a new paradigm for solving partial differential equations (PDEs) by integrating physical laws into the learning process of neural networks. However, despite their foundational role, the hidden irreversibility implied by the Second Law of Thermodynamics is often neglected during training, leading to unphysical solutions or even training failures in…
▽ More
Physics-informed neural networks (PINNs) represent a new paradigm for solving partial differential equations (PDEs) by integrating physical laws into the learning process of neural networks. However, despite their foundational role, the hidden irreversibility implied by the Second Law of Thermodynamics is often neglected during training, leading to unphysical solutions or even training failures in conventional PINNs. In this paper, we identify this critical gap and introduce a simple, generalized, yet robust irreversibility-regularized strategy that enforces hidden physical laws as soft constraints during training. This approach ensures that the learned solutions consistently respect the intrinsic one-way nature of irreversible physical processes. Across a wide range of benchmarks spanning traveling wave propagation, steady combustion, ice melting, corrosion evolution, and crack propagation, we demonstrate that our regularization scheme reduces predictive errors by more than an order of magnitude, while requiring only minimal modification to existing PINN frameworks. We believe that the proposed framework is broadly applicable to a wide class of PDE-governed physical systems and will have significant impact within the scientific machine learning community.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
Iterative Diffusion-Refined Neural Attenuation Fields for Multi-Source Stationary CT Reconstruction: NAF Meets Diffusion Model
Authors:
Jiancheng Fang,
Shaoyu Wang,
Junlin Wang,
Weiwen Wu,
Yikun Zhang,
Qiegen Liu
Abstract:
Multi-source stationary computed tomography (CT) has recently attracted attention for its ability to achieve rapid image reconstruction, making it suitable for time-sensitive clinical and industrial applications. However, practical systems are often constrained by ultra-sparse-view sampling, which significantly degrades reconstruction quality. Traditional methods struggle under ultra-sparse-view s…
▽ More
Multi-source stationary computed tomography (CT) has recently attracted attention for its ability to achieve rapid image reconstruction, making it suitable for time-sensitive clinical and industrial applications. However, practical systems are often constrained by ultra-sparse-view sampling, which significantly degrades reconstruction quality. Traditional methods struggle under ultra-sparse-view settings, where interpolation becomes inaccurate and the resulting reconstructions are unsatisfactory. To address this challenge, this study proposes Diffusion-Refined Neural Attenuation Fields (Diff-NAF), an iterative framework tailored for multi-source stationary CT under ultra-sparse-view conditions. Diff-NAF combines a Neural Attenuation Field representation with a dual-branch conditional diffusion model. The process begins by training an initial NAF using ultra-sparse-view projections. New projections are then generated through an Angle-Prior Guided Projection Synthesis strategy that exploits inter view priors, and are subsequently refined by a Diffusion-driven Reuse Projection Refinement Module. The refined projections are incorporated as pseudo-labels into the training set for the next iteration. Through iterative refinement, Diff-NAF progressively enhances projection completeness and reconstruction fidelity under ultra-sparse-view conditions, ultimately yielding high-quality CT reconstructions. Experimental results on multiple simulated 3D CT volumes and real projection data demonstrate that Diff-NAF achieves the best performance under ultra-sparse-view conditions.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
PathMind: A Retrieve-Prioritize-Reason Framework for Knowledge Graph Reasoning with Large Language Models
Authors:
Yu Liu,
Xixun Lin,
Yanmin Shang,
Yangxi Li,
Shi Wang,
Yanan Cao
Abstract:
Knowledge graph reasoning (KGR) is the task of inferring new knowledge by performing logical deductions on knowledge graphs. Recently, large language models (LLMs) have demonstrated remarkable performance in complex reasoning tasks. Despite promising success, current LLM-based KGR methods still face two critical limitations. First, existing methods often extract reasoning paths indiscriminately, w…
▽ More
Knowledge graph reasoning (KGR) is the task of inferring new knowledge by performing logical deductions on knowledge graphs. Recently, large language models (LLMs) have demonstrated remarkable performance in complex reasoning tasks. Despite promising success, current LLM-based KGR methods still face two critical limitations. First, existing methods often extract reasoning paths indiscriminately, without assessing their different importance, which may introduce irrelevant noise that misleads LLMs. Second, while many methods leverage LLMs to dynamically explore potential reasoning paths, they require high retrieval demands and frequent LLM calls. To address these limitations, we propose PathMind, a novel framework designed to enhance faithful and interpretable reasoning by selectively guiding LLMs with important reasoning paths. Specifically, PathMind follows a "Retrieve-Prioritize-Reason" paradigm. First, it retrieves a query subgraph from KG through the retrieval module. Next, it introduces a path prioritization mechanism that identifies important reasoning paths using a semantic-aware path priority function, which simultaneously considers the accumulative cost and the estimated future cost for reaching the target. Finally, PathMind generates accurate and logically consistent responses via a dual-phase training strategy, including task-specific instruction tuning and path-wise preference alignment. Extensive experiments on benchmark datasets demonstrate that PathMind consistently outperforms competitive baselines, particularly on complex reasoning tasks with fewer input tokens, by identifying essential reasoning paths.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
DevPiolt: Operation Recommendation for IoT Devices at Xiaomi Home
Authors:
Yuxiang Wang,
Siwen Wang,
Haowei Han,
Ao Wang,
Boya Liu,
Yong Zhao,
Chengbo Wu,
Bin Zhu,
Bin Qin,
Xiaokai Zhou,
Xiao Yan,
Jiawei Jiang,
Bo Du
Abstract:
Operation recommendation for IoT devices refers to generating personalized device operations for users based on their context, such as historical operations, environment information, and device status. This task is crucial for enhancing user satisfaction and corporate profits. Existing recommendation models struggle with complex operation logic, diverse user preferences, and sensitive to suboptima…
▽ More
Operation recommendation for IoT devices refers to generating personalized device operations for users based on their context, such as historical operations, environment information, and device status. This task is crucial for enhancing user satisfaction and corporate profits. Existing recommendation models struggle with complex operation logic, diverse user preferences, and sensitive to suboptimal suggestions, limiting their applicability to IoT device operations. To address these issues, we propose DevPiolt, a LLM-based recommendation model for IoT device operations. Specifically, we first equip the LLM with fundamental domain knowledge of IoT operations via continual pre-training and multi-task fine-tuning. Then, we employ direct preference optimization to align the fine-tuned LLM with specific user preferences. Finally, we design a confidence-based exposure control mechanism to avoid negative user experiences from low-quality recommendations. Extensive experiments show that DevPiolt significantly outperforms baselines on all datasets, with an average improvement of 69.5% across all metrics. DevPiolt has been practically deployed in Xiaomi Home app for one quarter, providing daily operation recommendations to 255,000 users. Online experiment results indicate a 21.6% increase in unique visitor device coverage and a 29.1% increase in page view acceptance rates.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
Learning Representation and Synergy Invariances: A Povable Framework for Generalized Multimodal Face Anti-Spoofing
Authors:
Xun Lin,
Shuai Wang,
Yi Yu,
Zitong Yu,
Jiale Zhou,
Yizhong Liu,
Xiaochun Cao,
Alex Kot,
Yefeng Zheng
Abstract:
Multimodal Face Anti-Spoofing (FAS) methods, which integrate multiple visual modalities, often suffer even more severe performance degradation than unimodal FAS when deployed in unseen domains. This is mainly due to two overlooked risks that affect cross-domain multimodal generalization. The first is the modal representation invariant risk, i.e., whether representations remain generalizable under…
▽ More
Multimodal Face Anti-Spoofing (FAS) methods, which integrate multiple visual modalities, often suffer even more severe performance degradation than unimodal FAS when deployed in unseen domains. This is mainly due to two overlooked risks that affect cross-domain multimodal generalization. The first is the modal representation invariant risk, i.e., whether representations remain generalizable under domain shift. We theoretically show that the inherent class asymmetry in FAS (diverse spoofs vs. compact reals) enlarges the upper bound of generalization error, and this effect is further amplified in multimodal settings. The second is the modal synergy invariant risk, where models overfit to domain-specific inter-modal correlations. Such spurious synergy cannot generalize to unseen attacks in target domains, leading to performance drops. To solve these issues, we propose a provable framework, namely Multimodal Representation and Synergy Invariance Learning (RiSe). For representation risk, RiSe introduces Asymmetric Invariant Risk Minimization (AsyIRM), which learns an invariant spherical decision boundary in radial space to fit asymmetric distributions, while preserving domain cues in angular space. For synergy risk, RiSe employs Multimodal Synergy Disentanglement (MMSD), a self-supervised task enhancing intrinsic, generalizable modal features via cross-sample mixing and disentanglement. Theoretical analysis and experiments verify RiSe, which achieves state-of-the-art cross-domain performance.
△ Less
Submitted 18 November, 2025;
originally announced November 2025.
-
Run, Ruminate, and Regulate: A Dual-process Thinking System for Vision-and-Language Navigation
Authors:
Yu Zhong,
Zihao Zhang,
Rui Zhang,
Lingdong Huang,
Haihan Gao,
Shuo Wang,
Da Li,
Ruijian Han,
Jiaming Guo,
Shaohui Peng,
Di Huang,
Yunji Chen
Abstract:
Vision-and-Language Navigation (VLN) requires an agent to dynamically explore complex 3D environments following human instructions. Recent research underscores the potential of harnessing large language models (LLMs) for VLN, given their commonsense knowledge and general reasoning capabilities. Despite their strengths, a substantial gap in task completion performance persists between LLM-based app…
▽ More
Vision-and-Language Navigation (VLN) requires an agent to dynamically explore complex 3D environments following human instructions. Recent research underscores the potential of harnessing large language models (LLMs) for VLN, given their commonsense knowledge and general reasoning capabilities. Despite their strengths, a substantial gap in task completion performance persists between LLM-based approaches and domain experts, as LLMs inherently struggle to comprehend real-world spatial correlations precisely. Additionally, introducing LLMs is accompanied with substantial computational cost and inference latency. To address these issues, we propose a novel dual-process thinking framework dubbed R3, integrating LLMs' generalization capabilities with VLN-specific expertise in a zero-shot manner. The framework comprises three core modules: Runner, Ruminator, and Regulator. The Runner is a lightweight transformer-based expert model that ensures efficient and accurate navigation under regular circumstances. The Ruminator employs a powerful multimodal LLM as the backbone and adopts chain-of-thought (CoT) prompting to elicit structured reasoning. The Regulator monitors the navigation progress and controls the appropriate thinking mode according to three criteria, integrating Runner and Ruminator harmoniously. Experimental results illustrate that R3 significantly outperforms other state-of-the-art methods, exceeding 3.28% and 3.30% in SPL and RGSPL respectively on the REVERIE benchmark. This pronounced enhancement highlights the effectiveness of our method in handling challenging VLN tasks.
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
LoCoBench-Agent: An Interactive Benchmark for LLM Agents in Long-Context Software Engineering
Authors:
Jielin Qiu,
Zuxin Liu,
Zhiwei Liu,
Rithesh Murthy,
Jianguo Zhang,
Haolin Chen,
Shiyu Wang,
Ming Zhu,
Liangwei Yang,
Juntao Tan,
Roshan Ram,
Akshara Prabhakar,
Tulika Awalgaonkar,
Zixiang Chen,
Zhepeng Cen,
Cheng Qian,
Shelby Heinecke,
Weiran Yao,
Silvio Savarese,
Caiming Xiong,
Huan Wang
Abstract:
As large language models (LLMs) evolve into sophisticated autonomous agents capable of complex software development tasks, evaluating their real-world capabilities becomes critical. While existing benchmarks like LoCoBench~\cite{qiu2025locobench} assess long-context code understanding, they focus on single-turn evaluation and cannot capture the multi-turn interactive nature, tool usage patterns, a…
▽ More
As large language models (LLMs) evolve into sophisticated autonomous agents capable of complex software development tasks, evaluating their real-world capabilities becomes critical. While existing benchmarks like LoCoBench~\cite{qiu2025locobench} assess long-context code understanding, they focus on single-turn evaluation and cannot capture the multi-turn interactive nature, tool usage patterns, and adaptive reasoning required by real-world coding agents. We introduce \textbf{LoCoBench-Agent}, a comprehensive evaluation framework specifically designed to assess LLM agents in realistic, long-context software engineering workflows. Our framework extends LoCoBench's 8,000 scenarios into interactive agent environments, enabling systematic evaluation of multi-turn conversations, tool usage efficiency, error recovery, and architectural consistency across extended development sessions. We also introduce an evaluation methodology with 9 metrics across comprehension and efficiency dimensions. Our framework provides agents with 8 specialized tools (file operations, search, code analysis) and evaluates them across context lengths ranging from 10K to 1M tokens, enabling precise assessment of long-context performance. Through systematic evaluation of state-of-the-art models, we reveal several key findings: (1) agents exhibit remarkable long-context robustness; (2) comprehension-efficiency trade-off exists with negative correlation, where thorough exploration increases comprehension but reduces efficiency; and (3) conversation efficiency varies dramatically across models, with strategic tool usage patterns differentiating high-performing agents. As the first long-context LLM agent benchmark for software engineering, LoCoBench-Agent establishes a rigorous foundation for measuring agent capabilities, identifying performance gaps, and advancing autonomous software development at scale.
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
VitalBench: A Rigorous Multi-Center Benchmark for Long-Term Vital Sign Prediction in Intraoperative Care
Authors:
Xiuding Cai,
Xueyao Wang,
Sen Wang,
Yaoyao Zhu,
Jiao Chen,
Yu Yao
Abstract:
Intraoperative monitoring and prediction of vital signs are critical for ensuring patient safety and improving surgical outcomes. Despite recent advances in deep learning models for medical time-series forecasting, several challenges persist, including the lack of standardized benchmarks, incomplete data, and limited cross-center validation. To address these challenges, we introduce VitalBench, a…
▽ More
Intraoperative monitoring and prediction of vital signs are critical for ensuring patient safety and improving surgical outcomes. Despite recent advances in deep learning models for medical time-series forecasting, several challenges persist, including the lack of standardized benchmarks, incomplete data, and limited cross-center validation. To address these challenges, we introduce VitalBench, a novel benchmark specifically designed for intraoperative vital sign prediction. VitalBench includes data from over 4,000 surgeries across two independent medical centers, offering three evaluation tracks: complete data, incomplete data, and cross-center generalization. This framework reflects the real-world complexities of clinical practice, minimizing reliance on extensive preprocessing and incorporating masked loss techniques for robust and unbiased model evaluation. By providing a standardized and unified platform for model development and comparison, VitalBench enables researchers to focus on architectural innovation while ensuring consistency in data handling. This work lays the foundation for advancing predictive models for intraoperative vital sign forecasting, ensuring that these models are not only accurate but also robust and adaptable across diverse clinical environments. Our code and data are available at https://github.com/XiudingCai/VitalBench.
△ Less
Submitted 14 November, 2025;
originally announced November 2025.
-
TacEleven: generative tactic discovery for football open play
Authors:
Siyao Zhao,
Hao Ma,
Zhiqiang Pu,
Jingjing Huang,
Yi Pan,
Shijie Wang,
Zhi Ming
Abstract:
Creating offensive advantages during open play is fundamental to football success. However, due to the highly dynamic and long-sequence nature of open play, the potential tactic space grows exponentially as the sequence progresses, making automated tactic discovery extremely challenging. To address this, we propose TacEleven, a generative framework for football open-play tactic discovery developed…
▽ More
Creating offensive advantages during open play is fundamental to football success. However, due to the highly dynamic and long-sequence nature of open play, the potential tactic space grows exponentially as the sequence progresses, making automated tactic discovery extremely challenging. To address this, we propose TacEleven, a generative framework for football open-play tactic discovery developed in close collaboration with domain experts from AJ Auxerre, designed to assist coaches and analysts in tactical decision-making. TacEleven consists of two core components: a language-controlled tactical generator that produces diverse tactical proposals, and a multimodal large language model-based tactical critic that selects the optimal proposal aligned with a high-level stylistic tactical instruction. The two components enables rapid exploration of tactical proposals and discovery of alternative open-play offensive tactics. We evaluate TacEleven across three tasks with progressive tactical complexity: counterfactual exploration, single-step discovery, and multi-step discovery, through both quantitative metrics and a questionnaire-based qualitative assessment. The results show that the TacEleven-discovered tactics exhibit strong realism and tactical creativity, with 52.50% of the multi-step tactical alternatives rated adoptable in real-world elite football scenarios, highlighting the framework's ability to rapidly generate numerous high-quality tactics for complex long-sequence open-play situations. TacEleven demonstrates the potential of creatively leveraging domain data and generative models to advance tactical analysis in sports.
△ Less
Submitted 18 November, 2025; v1 submitted 17 November, 2025;
originally announced November 2025.
-
A Secure Semantic Communication System Based on Knowledge Graph
Authors:
Qin Guo,
Haonan Tong,
Sihua Wang,
Peiyuan Si,
Jun Zhao,
Changchuan Yin
Abstract:
This study proposes a novel approach to ensure the security of textual data transmission in a semantic communication system. In the proposed system, a sender transmits textual information to a receiver, while a potential eavesdropper attempts to intercept the information. At the sender side, the text is initially preprocessed, where each sentence is annotated with its corresponding topic, and subs…
▽ More
This study proposes a novel approach to ensure the security of textual data transmission in a semantic communication system. In the proposed system, a sender transmits textual information to a receiver, while a potential eavesdropper attempts to intercept the information. At the sender side, the text is initially preprocessed, where each sentence is annotated with its corresponding topic, and subsequently extracted into a knowledge graph. To achieve the secure transmission of the knowledge graph, we propose a channel encryption scheme that integrates constellation diagonal transformation with multi-parameter weighted fractional Fourier transform (MP-WFRFT). At the receiver side, the textual data is first decrypted, and then recovered via a transformer model. Experimental results demonstrate that the proposed method reduces the probability of information compromise. The legitimate receiver achieves a Bilingual Evaluation Understudy (BLEU) score of 0.9, whereas the BLEU score of the eavesdropper remains below 0.3. Compared to the baselines, the proposed method can improve the security by up to 20%.
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
Soft Conflict-Resolution Decision Transformer for Offline Multi-Task Reinforcement Learning
Authors:
Shudong Wang,
Xinfei Wang,
Chenhao Zhang,
Shanchen Pang,
Haiyuan Gui,
Wenhao Ji,
Xiaojian Liao
Abstract:
Multi-task reinforcement learning (MTRL) seeks to learn a unified policy for diverse tasks, but often suffers from gradient conflicts across tasks. Existing masking-based methods attempt to mitigate such conflicts by assigning task-specific parameter masks. However, our empirical study shows that coarse-grained binary masks have the problem of over-suppressing key conflicting parameters, hindering…
▽ More
Multi-task reinforcement learning (MTRL) seeks to learn a unified policy for diverse tasks, but often suffers from gradient conflicts across tasks. Existing masking-based methods attempt to mitigate such conflicts by assigning task-specific parameter masks. However, our empirical study shows that coarse-grained binary masks have the problem of over-suppressing key conflicting parameters, hindering knowledge sharing across tasks. Moreover, different tasks exhibit varying conflict levels, yet existing methods use a one-size-fits-all fixed sparsity strategy to keep training stability and performance, which proves inadequate. These limitations hinder the model's generalization and learning efficiency.
To address these issues, we propose SoCo-DT, a Soft Conflict-resolution method based by parameter importance. By leveraging Fisher information, mask values are dynamically adjusted to retain important parameters while suppressing conflicting ones. In addition, we introduce a dynamic sparsity adjustment strategy based on the Interquartile Range (IQR), which constructs task-specific thresholding schemes using the distribution of conflict and harmony scores during training. To enable adaptive sparsity evolution throughout training, we further incorporate an asymmetric cosine annealing schedule to continuously update the threshold. Experimental results on the Meta-World benchmark show that SoCo-DT outperforms the state-of-the-art method by 7.6% on MT50 and by 10.5% on the suboptimal dataset, demonstrating its effectiveness in mitigating gradient conflicts and improving overall multi-task performance.
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
Extracting Events Like Code: A Multi-Agent Programming Framework for Zero-Shot Event Extraction
Authors:
Quanjiang Guo,
Sijie Wang,
Jinchuan Zhang,
Ben Zhang,
Zhao Kang,
Ling Tian,
Ke Yan
Abstract:
Zero-shot event extraction (ZSEE) remains a significant challenge for large language models (LLMs) due to the need for complex reasoning and domain-specific understanding. Direct prompting often yields incomplete or structurally invalid outputs--such as misclassified triggers, missing arguments, and schema violations. To address these limitations, we present Agent-Event-Coder (AEC), a novel multi-…
▽ More
Zero-shot event extraction (ZSEE) remains a significant challenge for large language models (LLMs) due to the need for complex reasoning and domain-specific understanding. Direct prompting often yields incomplete or structurally invalid outputs--such as misclassified triggers, missing arguments, and schema violations. To address these limitations, we present Agent-Event-Coder (AEC), a novel multi-agent framework that treats event extraction like software engineering: as a structured, iterative code-generation process. AEC decomposes ZSEE into specialized subtasks--retrieval, planning, coding, and verification--each handled by a dedicated LLM agent. Event schemas are represented as executable class definitions, enabling deterministic validation and precise feedback via a verification agent. This programming-inspired approach allows for systematic disambiguation and schema enforcement through iterative refinement. By leveraging collaborative agent workflows, AEC enables LLMs to produce precise, complete, and schema-consistent extractions in zero-shot settings. Experiments across five diverse domains and six LLMs demonstrate that AEC consistently outperforms prior zero-shot baselines, showcasing the power of treating event extraction like code generation. The code and data are released on https://github.com/UESTC-GQJ/Agent-Event-Coder.
△ Less
Submitted 17 November, 2025;
originally announced November 2025.
-
UNSEEN: Enhancing Dataset Pruning from a Generalization Perspective
Authors:
Furui Xu,
Shaobo Wang,
Jiajun Zhang,
Chenghao Sun,
Haixiang Tang,
Linfeng Zhang
Abstract:
The growing scale of datasets in deep learning has introduced significant computational challenges. Dataset pruning addresses this challenge by constructing a compact but informative coreset from the full dataset with comparable performance. Previous approaches typically establish scoring metrics based on specific criteria to identify representative samples. However, these methods predominantly re…
▽ More
The growing scale of datasets in deep learning has introduced significant computational challenges. Dataset pruning addresses this challenge by constructing a compact but informative coreset from the full dataset with comparable performance. Previous approaches typically establish scoring metrics based on specific criteria to identify representative samples. However, these methods predominantly rely on sample scores obtained from the model's performance during the training (i.e., fitting) phase. As scoring models achieve near-optimal performance on training data, such fitting-centric approaches induce a dense distribution of sample scores within a narrow numerical range. This concentration reduces the distinction between samples and hinders effective selection. To address this challenge, we conduct dataset pruning from the perspective of generalization, i.e., scoring samples based on models not exposed to them during training. We propose a plug-and-play framework, UNSEEN, which can be integrated into existing dataset pruning methods. Additionally, conventional score-based methods are single-step and rely on models trained solely on the complete dataset, providing limited perspective on the importance of samples. To address this limitation, we scale UNSEEN to multi-step scenarios and propose an incremental selection technique through scoring models trained on varying coresets, and optimize the quality of the coreset dynamically. Extensive experiments demonstrate that our method significantly outperforms existing state-of-the-art (SOTA) methods on CIFAR-10, CIFAR-100, and ImageNet-1K. Notably, on ImageNet-1K, UNSEEN achieves lossless performance while reducing training data by 30\%.
△ Less
Submitted 17 November, 2025; v1 submitted 17 November, 2025;
originally announced November 2025.
-
GUIDE: Gaussian Unified Instance Detection for Enhanced Obstacle Perception in Autonomous Driving
Authors:
Chunyong Hu,
Qi Luo,
Jianyun Xu,
Song Wang,
Qiang Li,
Sheng Yang
Abstract:
In the realm of autonomous driving, accurately detecting surrounding obstacles is crucial for effective decision-making. Traditional methods primarily rely on 3D bounding boxes to represent these obstacles, which often fail to capture the complexity of irregularly shaped, real-world objects. To overcome these limitations, we present GUIDE, a novel framework that utilizes 3D Gaussians for instance…
▽ More
In the realm of autonomous driving, accurately detecting surrounding obstacles is crucial for effective decision-making. Traditional methods primarily rely on 3D bounding boxes to represent these obstacles, which often fail to capture the complexity of irregularly shaped, real-world objects. To overcome these limitations, we present GUIDE, a novel framework that utilizes 3D Gaussians for instance detection and occupancy prediction. Unlike conventional occupancy prediction methods, GUIDE also offers robust tracking capabilities. Our framework employs a sparse representation strategy, using Gaussian-to-Voxel Splatting to provide fine-grained, instance-level occupancy data without the computational demands associated with dense voxel grids. Experimental validation on the nuScenes dataset demonstrates GUIDE's performance, with an instance occupancy mAP of 21.61, marking a 50\% improvement over existing methods, alongside competitive tracking capabilities. GUIDE establishes a new benchmark in autonomous perception systems, effectively combining precision with computational efficiency to better address the complexities of real-world driving environments.
△ Less
Submitted 16 November, 2025;
originally announced November 2025.
-
Medical Knowledge Intervention Prompt Tuning for Medical Image Classification
Authors:
Ye Du,
Nanxi Yu,
Shujun Wang
Abstract:
Vision-language foundation models (VLMs) have shown great potential in feature transfer and generalization across a wide spectrum of medical-related downstream tasks. However, fine-tuning these models is resource-intensive due to their large number of parameters. Prompt tuning has emerged as a viable solution to mitigate memory usage and reduce training time while maintaining competitive performan…
▽ More
Vision-language foundation models (VLMs) have shown great potential in feature transfer and generalization across a wide spectrum of medical-related downstream tasks. However, fine-tuning these models is resource-intensive due to their large number of parameters. Prompt tuning has emerged as a viable solution to mitigate memory usage and reduce training time while maintaining competitive performance. Nevertheless, the challenge is that existing prompt tuning methods cannot precisely distinguish different kinds of medical concepts, which miss essentially specific disease-related features across various medical imaging modalities in medical image classification tasks. We find that Large Language Models (LLMs), trained on extensive text corpora, are particularly adept at providing this specialized medical knowledge. Motivated by this, we propose incorporating LLMs into the prompt tuning process. Specifically, we introduce the CILMP, Conditional Intervention of Large Language Models for Prompt Tuning, a method that bridges LLMs and VLMs to facilitate the transfer of medical knowledge into VLM prompts. CILMP extracts disease-specific representations from LLMs, intervenes within a low-rank linear subspace, and utilizes them to create disease-specific prompts. Additionally, a conditional mechanism is incorporated to condition the intervention process on each individual medical image, generating instance-adaptive prompts and thus enhancing adaptability. Extensive experiments across diverse medical image datasets demonstrate that CILMP consistently outperforms state-of-the-art prompt tuning methods, demonstrating its effectiveness. Code is available at https://github.com/usr922/cilmp.
△ Less
Submitted 16 November, 2025;
originally announced November 2025.
-
BSO: Binary Spiking Online Optimization Algorithm
Authors:
Yu Liang,
Yu Yang,
Wenjie Wei,
Ammar Belatreche,
Shuai Wang,
Malu Zhang,
Yang Yang
Abstract:
Binary Spiking Neural Networks (BSNNs) offer promising efficiency advantages for resource-constrained computing. However, their training algorithms often require substantial memory overhead due to latent weights storage and temporal processing requirements. To address this issue, we propose Binary Spiking Online (BSO) optimization algorithm, a novel online training algorithm that significantly red…
▽ More
Binary Spiking Neural Networks (BSNNs) offer promising efficiency advantages for resource-constrained computing. However, their training algorithms often require substantial memory overhead due to latent weights storage and temporal processing requirements. To address this issue, we propose Binary Spiking Online (BSO) optimization algorithm, a novel online training algorithm that significantly reduces training memory. BSO directly updates weights through flip signals under the online training framework. These signals are triggered when the product of gradient momentum and weights exceeds a threshold, eliminating the need for latent weights during training. To enhance performance, we propose T-BSO, a temporal-aware variant that leverages the inherent temporal dynamics of BSNNs by capturing gradient information across time steps for adaptive threshold adjustment. Theoretical analysis establishes convergence guarantees for both BSO and T-BSO, with formal regret bounds characterizing their convergence rates. Extensive experiments demonstrate that both BSO and T-BSO achieve superior optimization performance compared to existing training methods for BSNNs. The codes are available at https://github.com/hamings1/BSO.
△ Less
Submitted 16 November, 2025;
originally announced November 2025.
-
Scaling Law Analysis in Federated Learning: How to Select the Optimal Model Size?
Authors:
Xuanyu Chen,
Nan Yang,
Shuai Wang,
Dong Yuan
Abstract:
The recent success of large language models (LLMs) has sparked a growing interest in training large-scale models. As the model size continues to scale, concerns are growing about the depletion of high-quality, well-curated training data. This has led practitioners to explore training approaches like Federated Learning (FL), which can leverage the abundant data on edge devices while maintaining pri…
▽ More
The recent success of large language models (LLMs) has sparked a growing interest in training large-scale models. As the model size continues to scale, concerns are growing about the depletion of high-quality, well-curated training data. This has led practitioners to explore training approaches like Federated Learning (FL), which can leverage the abundant data on edge devices while maintaining privacy. However, the decentralization of training datasets in FL introduces challenges to scaling large models, a topic that remains under-explored. This paper fills this gap and provides qualitative insights on generalizing the previous model scaling experience to federated learning scenarios. Specifically, we derive a PAC-Bayes (Probably Approximately Correct Bayesian) upper bound for the generalization error of models trained with stochastic algorithms in federated settings and quantify the impact of distributed training data on the optimal model size by finding the analytic solution of model size that minimizes this bound. Our theoretical results demonstrate that the optimal model size has a negative power law relationship with the number of clients if the total training compute is unchanged. Besides, we also find that switching to FL with the same training compute will inevitably reduce the upper bound of generalization performance that the model can achieve through training, and that estimating the optimal model size in federated scenarios should depend on the average training compute across clients. Furthermore, we also empirically validate the correctness of our results with extensive training runs on different models, network settings, and datasets.
△ Less
Submitted 15 November, 2025;
originally announced November 2025.
-
Understanding InfoNCE: Transition Probability Matrix Induced Feature Clustering
Authors:
Ge Cheng,
Shuo Wang,
Yun Zhang
Abstract:
Contrastive learning has emerged as a cornerstone of unsupervised representation learning across vision, language, and graph domains, with InfoNCE as its dominant objective. Despite its empirical success, the theoretical underpinnings of InfoNCE remain limited. In this work, we introduce an explicit feature space to model augmented views of samples and a transition probability matrix to capture da…
▽ More
Contrastive learning has emerged as a cornerstone of unsupervised representation learning across vision, language, and graph domains, with InfoNCE as its dominant objective. Despite its empirical success, the theoretical underpinnings of InfoNCE remain limited. In this work, we introduce an explicit feature space to model augmented views of samples and a transition probability matrix to capture data augmentation dynamics. We demonstrate that InfoNCE optimizes the probability of two views sharing the same source toward a constant target defined by this matrix, naturally inducing feature clustering in the representation space. Leveraging this insight, we propose Scaled Convergence InfoNCE (SC-InfoNCE), a novel loss function that introduces a tunable convergence target to flexibly control feature similarity alignment. By scaling the target matrix, SC-InfoNCE enables flexible control over feature similarity alignment, allowing the training objective to better match the statistical properties of downstream data. Experiments on benchmark datasets, including image, graph, and text tasks, show that SC-InfoNCE consistently achieves strong and reliable performance across diverse domains.
△ Less
Submitted 15 November, 2025;
originally announced November 2025.
-
Incremental Maintenance of DatalogMTL Materialisations
Authors:
Kaiyue Zhao,
Dingqi Chen,
Shaoyu Wang,
Pan Hu
Abstract:
DatalogMTL extends the classical Datalog language with metric temporal logic (MTL), enabling expressive reasoning over temporal data. While existing reasoning approaches, such as materialisation based and automata based methods, offer soundness and completeness, they lack support for handling efficient dynamic updates, a crucial requirement for real-world applications that involve frequent data up…
▽ More
DatalogMTL extends the classical Datalog language with metric temporal logic (MTL), enabling expressive reasoning over temporal data. While existing reasoning approaches, such as materialisation based and automata based methods, offer soundness and completeness, they lack support for handling efficient dynamic updates, a crucial requirement for real-world applications that involve frequent data updates. In this work, we propose DRedMTL, an incremental reasoning algorithm for DatalogMTL with bounded intervals. Our algorithm builds upon the classical DRed algorithm, which incrementally updates the materialisation of a Datalog program. Unlike a Datalog materialisation which is in essence a finite set of facts, a DatalogMTL materialisation has to be represented as a finite set of facts plus periodic intervals indicating how the full materialisation can be constructed through unfolding. To cope with this, our algorithm is equipped with specifically designed operators to efficiently handle such periodic representations of DatalogMTL materialisations. We have implemented this approach and tested it on several publicly available datasets. Experimental results show that DRedMTL often significantly outperforms rematerialisation, sometimes by orders of magnitude.
△ Less
Submitted 19 November, 2025; v1 submitted 15 November, 2025;
originally announced November 2025.
-
Continuous-time Discrete-space Diffusion Model for Recommendation
Authors:
Chengyi Liu,
Xiao Chen,
Shijie Wang,
Wenqi Fan,
Qing Li
Abstract:
In the era of information explosion, Recommender Systems (RS) are essential for alleviating information overload and providing personalized user experiences. Recent advances in diffusion-based generative recommenders have shown promise in capturing the dynamic nature of user preferences. These approaches explore a broader range of user interests by progressively perturbing the distribution of user…
▽ More
In the era of information explosion, Recommender Systems (RS) are essential for alleviating information overload and providing personalized user experiences. Recent advances in diffusion-based generative recommenders have shown promise in capturing the dynamic nature of user preferences. These approaches explore a broader range of user interests by progressively perturbing the distribution of user-item interactions and recovering potential preferences from noise, enabling nuanced behavioral understanding. However, existing diffusion-based approaches predominantly operate in continuous space through encoded graph-based historical interactions, which may compromise potential information loss and suffer from computational inefficiency. As such, we propose CDRec, a novel Continuous-time Discrete-space Diffusion Recommendation framework, which models user behavior patterns through discrete diffusion on historical interactions over continuous time. The discrete diffusion algorithm operates via discrete element operations (e.g., masking) while incorporating domain knowledge through transition matrices, producing more meaningful diffusion trajectories. Furthermore, the continuous-time formulation enables flexible adaptive sampling. To better adapt discrete diffusion models to recommendations, CDRec introduces: (1) a novel popularity-aware noise schedule that generates semantically meaningful diffusion trajectories, and (2) an efficient training framework combining consistency parameterization for fast sampling and a contrastive learning objective guided by multi-hop collaborative signals for personalized recommendation. Extensive experiments on real-world datasets demonstrate CDRec's superior performance in both recommendation accuracy and computational efficiency.
△ Less
Submitted 15 November, 2025;
originally announced November 2025.
-
PipeDiT: Accelerating Diffusion Transformers in Video Generation with Task Pipelining and Model Decoupling
Authors:
Sijie Wang,
Qiang Wang,
Shaohuai Shi
Abstract:
Video generation has been advancing rapidly, and diffusion transformer (DiT) based models have demonstrated remark- able capabilities. However, their practical deployment is of- ten hindered by slow inference speeds and high memory con- sumption. In this paper, we propose a novel pipelining frame- work named PipeDiT to accelerate video generation, which is equipped with three main innovations. Fir…
▽ More
Video generation has been advancing rapidly, and diffusion transformer (DiT) based models have demonstrated remark- able capabilities. However, their practical deployment is of- ten hindered by slow inference speeds and high memory con- sumption. In this paper, we propose a novel pipelining frame- work named PipeDiT to accelerate video generation, which is equipped with three main innovations. First, we design a pipelining algorithm (PipeSP) for sequence parallelism (SP) to enable the computation of latent generation and commu- nication among multiple GPUs to be pipelined, thus reduc- ing inference latency. Second, we propose DeDiVAE to de- couple the diffusion module and the variational autoencoder (VAE) module into two GPU groups, whose executions can also be pipelined to reduce memory consumption and infer- ence latency. Third, to better utilize the GPU resources in the VAE group, we propose an attention co-processing (Aco) method to further reduce the overall video generation latency. We integrate our PipeDiT into both OpenSoraPlan and Hun- yuanVideo, two state-of-the-art open-source video generation frameworks, and conduct extensive experiments on two 8- GPU systems. Experimental results show that, under many common resolution and timestep configurations, our PipeDiT achieves 1.06x to 4.02x speedups over OpenSoraPlan and HunyuanVideo.
△ Less
Submitted 15 November, 2025;
originally announced November 2025.
-
BackWeak: Backdooring Knowledge Distillation Simply with Weak Triggers and Fine-tuning
Authors:
Shanmin Wang,
Dongdong Zhao
Abstract:
Knowledge Distillation (KD) is essential for compressing large models, yet relying on pre-trained "teacher" models downloaded from third-party repositories introduces serious security risks -- most notably backdoor attacks. Existing KD backdoor methods are typically complex and computationally intensive: they employ surrogate student models and simulated distillation to guarantee transferability,…
▽ More
Knowledge Distillation (KD) is essential for compressing large models, yet relying on pre-trained "teacher" models downloaded from third-party repositories introduces serious security risks -- most notably backdoor attacks. Existing KD backdoor methods are typically complex and computationally intensive: they employ surrogate student models and simulated distillation to guarantee transferability, and they construct triggers in a way similar to universal adversarial perturbations (UAPs), which being not stealthy in magnitude, inherently exhibit strong adversarial behavior. This work questions whether such complexity is necessary and constructs stealthy "weak" triggers -- imperceptible perturbations that have negligible adversarial effect. We propose BackWeak, a simple, surrogate-free attack paradigm. BackWeak shows that a powerful backdoor can be implanted by simply fine-tuning a benign teacher with a weak trigger using a very small learning rate. We demonstrate that this delicate fine-tuning is sufficient to embed a backdoor that reliably transfers to diverse student architectures during a victim's standard distillation process, yielding high attack success rates. Extensive empirical evaluations on multiple datasets, model architectures, and KD methods show that BackWeak is efficient, simpler, and often more stealthy than previous elaborate approaches. This work calls on researchers studying KD backdoor attacks to pay particular attention to the trigger's stealthiness and its potential adversarial characteristics.
△ Less
Submitted 15 November, 2025;
originally announced November 2025.
-
Improving Autoformalization Using Direct Dependency Retrieval
Authors:
Shaoqi Wang,
Lu Yu,
Chunjie Yang
Abstract:
The convergence of deep learning and formal mathematics has spurred research in formal verification. Statement autoformalization, a crucial first step in this process, aims to translate informal descriptions into machine-verifiable representations but remains a significant challenge. The core difficulty lies in the fact that existing methods often suffer from a lack of contextual awareness, leadin…
▽ More
The convergence of deep learning and formal mathematics has spurred research in formal verification. Statement autoformalization, a crucial first step in this process, aims to translate informal descriptions into machine-verifiable representations but remains a significant challenge. The core difficulty lies in the fact that existing methods often suffer from a lack of contextual awareness, leading to hallucination of formal definitions and theorems. Furthermore, current retrieval-augmented approaches exhibit poor precision and recall for formal library dependency retrieval, and lack the scalability to effectively leverage ever-growing public datasets. To bridge this gap, we propose a novel retrieval-augmented framework based on DDR (\textit{Direct Dependency Retrieval}) for statement autoformalization. Our DDR method directly generates candidate library dependencies from natural language mathematical descriptions and subsequently verifies their existence within the formal library via an efficient suffix array check. Leveraging this efficient search mechanism, we constructed a dependency retrieval dataset of over 500,000 samples and fine-tuned a high-precision DDR model. Experimental results demonstrate that our DDR model significantly outperforms SOTA methods in both retrieval precision and recall. Consequently, an autoformalizer equipped with DDR shows consistent performance advantages in both single-attempt accuracy and multi-attempt stability compared to models using traditional selection-based RAG methods.
△ Less
Submitted 14 November, 2025;
originally announced November 2025.
-
MiroThinker: Pushing the Performance Boundaries of Open-Source Research Agents via Model, Context, and Interactive Scaling
Authors:
MiroMind Team,
Song Bai,
Lidong Bing,
Carson Chen,
Guanzheng Chen,
Yuntao Chen,
Zhe Chen,
Ziyi Chen,
Jifeng Dai,
Xuan Dong,
Wenhan Dou,
Yue Deng,
Yunjie Fu,
Junqi Ge,
Chenxia Han,
Tammy Huang,
Zhenhang Huang,
Jerry Jiao,
Shilei Jiang,
Tianyu Jiao,
Xiaoqi Jian,
Lei Lei,
Ruilin Li,
Ryan Luo,
Tiantong Li
, et al. (30 additional authors not shown)
Abstract:
We present MiroThinker v1.0, an open-source research agent designed to advance tool-augmented reasoning and information-seeking capabilities. Unlike previous agents that only scale up model size or context length, MiroThinker explores interaction scaling at the model level, systematically training the model to handle deeper and more frequent agent-environment interactions as a third dimension of p…
▽ More
We present MiroThinker v1.0, an open-source research agent designed to advance tool-augmented reasoning and information-seeking capabilities. Unlike previous agents that only scale up model size or context length, MiroThinker explores interaction scaling at the model level, systematically training the model to handle deeper and more frequent agent-environment interactions as a third dimension of performance improvement. Unlike LLM test-time scaling, which operates in isolation and risks degradation with longer reasoning chains, interactive scaling leverages environment feedback and external information acquisition to correct errors and refine trajectories. Through reinforcement learning, the model achieves efficient interaction scaling: with a 256K context window, it can perform up to 600 tool calls per task, enabling sustained multi-turn reasoning and complex real-world research workflows. Across four representative benchmarks-GAIA, HLE, BrowseComp, and BrowseComp-ZH-the 72B variant achieves up to 81.9%, 37.7%, 47.1%, and 55.6% accuracy respectively, surpassing previous open-source agents and approaching commercial counterparts such as GPT-5-high. Our analysis reveals that MiroThinker benefits from interactive scaling consistently: research performance improves predictably as the model engages in deeper and more frequent agent-environment interactions, demonstrating that interaction depth exhibits scaling behaviors analogous to model size and context length. These findings establish interaction scaling as a third critical dimension for building next-generation open research agents, complementing model capacity and context windows.
△ Less
Submitted 18 November, 2025; v1 submitted 14 November, 2025;
originally announced November 2025.
-
Learning to Refine: An Agentic RL Approach for Iterative SPARQL Query Construction
Authors:
Floris Vossebeld,
Shenghui Wang
Abstract:
Generating complex, logically-sound SPARQL queries for multi-hop questions remains a critical bottleneck for Knowledge Graph Question Answering, as the brittle nature of one-shot generation by Large Language Models (LLMs) hinders reliable interaction with structured data. Current methods lack the adaptive policies needed to dynamically debug queries based on real-time execution feedback. This pape…
▽ More
Generating complex, logically-sound SPARQL queries for multi-hop questions remains a critical bottleneck for Knowledge Graph Question Answering, as the brittle nature of one-shot generation by Large Language Models (LLMs) hinders reliable interaction with structured data. Current methods lack the adaptive policies needed to dynamically debug queries based on real-time execution feedback. This paper introduces a novel agentic framework where an LLM learns a resilient policy for the sequential process of iterative SPARQL construction. We show that a compact 3B-parameter model, trained exclusively via outcome-driven Reinforcement Learning (GRPO) without supervised fine-tuning, can learn effective policies for this task, discovering how to systematically recover from execution errors and refine its queries toward a correct answer. On a curated, executable single-answer subset of LC-QuAD 2.0, our agent achieves 49.7\% accuracy post-entity-linking, a significant 17.5 percentage point improvement over the strongest iterative zero-shot baseline. Further analysis reveals that while the agent's capability is driven by RL, its performance is enhanced by an explicit deliberative reasoning step that acts as a cognitive scaffold to improve policy precision. This work presents a generalizable blueprint for teaching agents to master formal, symbolic tools through interaction, bridging the gap between probabilistic LLMs and the structured world of Knowledge Graphs.
△ Less
Submitted 14 November, 2025;
originally announced November 2025.
-
OSGym: Super-Scalable Distributed Data Engine for Generalizable Computer Agents
Authors:
Zengyi Qin,
Jinyuan Chen,
Yunze Man,
Shengcao Cao,
Ziqi Pang,
Zhuoyuan Wang,
Xin Sun,
Gen Lin,
Han Fang,
Ling Zhu,
Zixin Xie,
Zibu Wei,
Tianshu Ran,
Haoran Geng,
Xander Wu,
Zachary Bright,
Qizhen Sun,
Rui Wang,
Yuyang Cai,
Song Wang,
Jiace Zhao,
Han Cao,
Yeyang Zhou,
Tianrui Liu,
Ray Pan
, et al. (7 additional authors not shown)
Abstract:
We introduce OSGym, a super-scalable distributed data engine for training agents across diverse computer-related tasks. OSGym efficiently scales to over a thousand operating system (OS) replicas at an academia-affordable cost, serving as dynamic runtime environments for intelligent agents. It offers three key advantages. (1) Scalability: Despite the intensive resource requirements of running multi…
▽ More
We introduce OSGym, a super-scalable distributed data engine for training agents across diverse computer-related tasks. OSGym efficiently scales to over a thousand operating system (OS) replicas at an academia-affordable cost, serving as dynamic runtime environments for intelligent agents. It offers three key advantages. (1) Scalability: Despite the intensive resource requirements of running multiple OS replicas, OSGym parallelizes over a thousand instances while maintaining operational efficiency under constrained resources, generating up to 1420 multi-turn trajectories per minute. (2) Generality and Customizability: OSGym supports a broad spectrum of tasks that run on OS platforms, including tool use, browser interactions, software engineering, and office applications, with flexible support for diverse model training algorithms. (3) Economic Viability: OSGym operates at only 0.2-0.3 USD per day per OS replica using accessible on-demand compute providers. It is fully open-source and freely available for both research and commercial use. Experiments show that OSGym enables comprehensive data collection, supervised fine-tuning, and reinforcement learning pipelines for computer agents. Models trained with OSGym outperform state-of-the-art baselines, demonstrating its potential to advance scalability and universality in future agent research.
△ Less
Submitted 11 November, 2025;
originally announced November 2025.
-
SEAL: Subspace-Anchored Watermarks for LLM Ownership
Authors:
Yanbo Dai,
Zongjie Li,
Zhenlan Ji,
Shuai Wang
Abstract:
Large language models (LLMs) have achieved remarkable success across a wide range of natural language processing tasks, demonstrating human-level performance in text generation, reasoning, and question answering. However, training such models requires substantial computational resources, large curated datasets, and sophisticated alignment procedures. As a result, they constitute highly valuable in…
▽ More
Large language models (LLMs) have achieved remarkable success across a wide range of natural language processing tasks, demonstrating human-level performance in text generation, reasoning, and question answering. However, training such models requires substantial computational resources, large curated datasets, and sophisticated alignment procedures. As a result, they constitute highly valuable intellectual property (IP) assets that warrant robust protection mechanisms. Existing IP protection approaches suffer from critical limitations. Model fingerprinting techniques can identify model architectures but fail to establish ownership of specific model instances. In contrast, traditional backdoor-based watermarking methods embed behavioral anomalies that can be easily removed through common post-processing operations such as fine-tuning or knowledge distillation.
We propose SEAL, a subspace-anchored watermarking framework that embeds multi-bit signatures directly into the model's latent representational space, supporting both white-box and black-box verification scenarios. Our approach leverages model editing techniques to align the hidden representations of selected anchor samples with predefined orthogonal bit vectors. This alignment embeds the watermark while preserving the model's original factual predictions, rendering the watermark functionally harmless and stealthy. We conduct comprehensive experiments on multiple benchmark datasets and six prominent LLMs, comparing SEAL with 11 existing fingerprinting and watermarking methods to demonstrate its superior effectiveness, fidelity, efficiency, and robustness. Furthermore, we evaluate SEAL under potential knowledgeable attacks and show that it maintains strong verification performance even when adversaries possess knowledge of the watermarking mechanism and the embedded signatures.
△ Less
Submitted 14 November, 2025;
originally announced November 2025.
-
AIonopedia: an LLM agent orchestrating multimodal learning for ionic liquid discovery
Authors:
Yuqi Yin,
Yibo Fu,
Siyuan Wang,
Peng Sun,
Hongyu Wang,
Xiaohui Wang,
Lei Zheng,
Zhiyong Li,
Zhirong Liu,
Jianji Wang,
Zhaoxi Sun
Abstract:
The discovery of novel Ionic Liquids (ILs) is hindered by critical challenges in property prediction, including limited data, poor model accuracy, and fragmented workflows. Leveraging the power of Large Language Models (LLMs), we introduce AIonopedia, to the best of our knowledge, the first LLM agent for IL discovery. Powered by an LLM-augmented multimodal domain foundation model for ILs, AIonoped…
▽ More
The discovery of novel Ionic Liquids (ILs) is hindered by critical challenges in property prediction, including limited data, poor model accuracy, and fragmented workflows. Leveraging the power of Large Language Models (LLMs), we introduce AIonopedia, to the best of our knowledge, the first LLM agent for IL discovery. Powered by an LLM-augmented multimodal domain foundation model for ILs, AIonopedia enables accurate property predictions and incorporates a hierarchical search architecture for molecular screening and design. Trained and evaluated on a newly curated and comprehensive IL dataset, our model delivers superior performance. Complementing these results, evaluations on literature-reported systems indicate that the agent can perform effective IL modification. Moving beyond offline tests, the practical efficacy was further confirmed through real-world wet-lab validation, in which the agent demonstrated exceptional generalization capabilities on challenging out-of-distribution tasks, underscoring its ability to accelerate real-world IL discovery.
△ Less
Submitted 14 November, 2025;
originally announced November 2025.
-
Accelerating Controllable Generation via Hybrid-grained Cache
Authors:
Lin Liu,
Huixia Ben,
Shuo Wang,
Jinda Lu,
Junxiang Qiu,
Shengeng Tang,
Yanbin Hao
Abstract:
Controllable generative models have been widely used to improve the realism of synthetic visual content. However, such models must handle control conditions and content generation computational requirements, resulting in generally low generation efficiency. To address this issue, we propose a Hybrid-Grained Cache (HGC) approach that reduces computational overhead by adopting cache strategies with…
▽ More
Controllable generative models have been widely used to improve the realism of synthetic visual content. However, such models must handle control conditions and content generation computational requirements, resulting in generally low generation efficiency. To address this issue, we propose a Hybrid-Grained Cache (HGC) approach that reduces computational overhead by adopting cache strategies with different granularities at different computational stages. Specifically, (1) we use a coarse-grained cache (block-level) based on feature reuse to dynamically bypass redundant computations in encoder-decoder blocks between each step of model reasoning. (2) We design a fine-grained cache (prompt-level) that acts within a module, where the fine-grained cache reuses cross-attention maps within consecutive reasoning steps and extends them to the corresponding module computations of adjacent steps. These caches of different granularities can be seamlessly integrated into each computational link of the controllable generation process. We verify the effectiveness of HGC on four benchmark datasets, especially its advantages in balancing generation efficiency and visual quality. For example, on the COCO-Stuff segmentation benchmark, our HGC significantly reduces the computational cost (MACs) by 63% (from 18.22T to 6.70T), while keeping the loss of semantic fidelity (quantized performance degradation) within 1.5%.
△ Less
Submitted 14 November, 2025;
originally announced November 2025.
-
A number-theoretic conjecture implying faster algorithms for polynomial factorization and integer factorization
Authors:
Chris Umans,
Siki Wang
Abstract:
The fastest known algorithm for factoring a degree $n$ univariate polynomial over a finite field $\mathbb{F}_q$ runs in time $O(n^{3/2 + o(1)}\text{polylog } q)$, and there is a reason to believe that the $3/2$ exponent represents a ''barrier'' inherent in algorithms that employ a so-called baby-steps-giant-steps strategy. In this paper, we propose a new strategy with the potential to overcome the…
▽ More
The fastest known algorithm for factoring a degree $n$ univariate polynomial over a finite field $\mathbb{F}_q$ runs in time $O(n^{3/2 + o(1)}\text{polylog } q)$, and there is a reason to believe that the $3/2$ exponent represents a ''barrier'' inherent in algorithms that employ a so-called baby-steps-giant-steps strategy. In this paper, we propose a new strategy with the potential to overcome the $3/2$ barrier. In doing so we are led to a number-theoretic conjecture, one form of which is that there are sets $S, T$ of cardinality $n^β$, consisting of positive integers of magnitude at most $\exp(n^α)$, such that every integer $i \in [n]$ divides $s-t$ for some $s \in S, t \in T$. Achieving $α+ β\le 1 + o(1)$ is trivial; we show that achieving $α, β< 1/2$ (together with an assumption that $S, T$ are structured) implies an improvement to the exponent 3/2 for univariate polynomial factorization. Achieving $α= β= 1/3$ is best-possible and would imply an exponent 4/3 algorithm for univariate polynomial factorization. Interestingly, a second consequence would be a reduction of the current-best exponent for deterministic (exponential) algorithms for factoring integers, from $1/5$ to $1/6$.
△ Less
Submitted 13 November, 2025;
originally announced November 2025.
-
Fast Data Attribution for Text-to-Image Models
Authors:
Sheng-Yu Wang,
Aaron Hertzmann,
Alexei A Efros,
Richard Zhang,
Jun-Yan Zhu
Abstract:
Data attribution for text-to-image models aims to identify the training images that most significantly influenced a generated output. Existing attribution methods involve considerable computational resources for each query, making them impractical for real-world applications. We propose a novel approach for scalable and efficient data attribution. Our key idea is to distill a slow, unlearning-base…
▽ More
Data attribution for text-to-image models aims to identify the training images that most significantly influenced a generated output. Existing attribution methods involve considerable computational resources for each query, making them impractical for real-world applications. We propose a novel approach for scalable and efficient data attribution. Our key idea is to distill a slow, unlearning-based attribution method to a feature embedding space for efficient retrieval of highly influential training images. During deployment, combined with efficient indexing and search methods, our method successfully finds highly influential images without running expensive attribution algorithms. We show extensive results on both medium-scale models trained on MSCOCO and large-scale Stable Diffusion models trained on LAION, demonstrating that our method can achieve better or competitive performance in a few seconds, faster than existing methods by 2,500x - 400,000x. Our work represents a meaningful step towards the large-scale application of data attribution methods on real-world models such as Stable Diffusion.
△ Less
Submitted 13 November, 2025;
originally announced November 2025.
-
FOUND: Fourier-based von Mises Distribution for Robust Single Domain Generalization in Object Detection
Authors:
Mengzhu Wang,
Changyuan Deng,
Shanshan Wang,
Nan Yin,
Long Lan,
Liang Yang
Abstract:
Single Domain Generalization (SDG) for object detection aims to train a model on a single source domain that can generalize effectively to unseen target domains. While recent methods like CLIP-based semantic augmentation have shown promise, they often overlook the underlying structure of feature distributions and frequency-domain characteristics that are critical for robustness. In this paper, we…
▽ More
Single Domain Generalization (SDG) for object detection aims to train a model on a single source domain that can generalize effectively to unseen target domains. While recent methods like CLIP-based semantic augmentation have shown promise, they often overlook the underlying structure of feature distributions and frequency-domain characteristics that are critical for robustness. In this paper, we propose a novel framework that enhances SDG object detection by integrating the von Mises-Fisher (vMF) distribution and Fourier transformation into a CLIP-guided pipeline. Specifically, we model the directional features of object representations using vMF to better capture domain-invariant semantic structures in the embedding space. Additionally, we introduce a Fourier-based augmentation strategy that perturbs amplitude and phase components to simulate domain shifts in the frequency domain, further improving feature robustness. Our method not only preserves the semantic alignment benefits of CLIP but also enriches feature diversity and structural consistency across domains. Extensive experiments on the diverse weather-driving benchmark demonstrate that our approach outperforms the existing state-of-the-art method.
△ Less
Submitted 13 November, 2025;
originally announced November 2025.
-
Rectify Evaluation Preference: Improving LLMs' Critique on Math Reasoning via Perplexity-aware Reinforcement Learning
Authors:
Changyuan Tian,
Zhicong Lu,
Shuang Qian,
Nayu Liu,
Peiguang Li,
Li Jin,
Leiyi Hu,
Zhizhao Zeng,
Sirui Wang,
Ke Zeng,
Zhi Guo
Abstract:
To improve Multi-step Mathematical Reasoning (MsMR) of Large Language Models (LLMs), it is crucial to obtain scalable supervision from the corpus by automatically critiquing mistakes in the reasoning process of MsMR and rendering a final verdict of the problem-solution. Most existing methods rely on crafting high-quality supervised fine-tuning demonstrations for critiquing capability enhancement a…
▽ More
To improve Multi-step Mathematical Reasoning (MsMR) of Large Language Models (LLMs), it is crucial to obtain scalable supervision from the corpus by automatically critiquing mistakes in the reasoning process of MsMR and rendering a final verdict of the problem-solution. Most existing methods rely on crafting high-quality supervised fine-tuning demonstrations for critiquing capability enhancement and pay little attention to delving into the underlying reason for the poor critiquing performance of LLMs. In this paper, we orthogonally quantify and investigate the potential reason -- imbalanced evaluation preference, and conduct a statistical preference analysis. Motivated by the analysis of the reason, a novel perplexity-aware reinforcement learning algorithm is proposed to rectify the evaluation preference, elevating the critiquing capability. Specifically, to probe into LLMs' critiquing characteristics, a One-to-many Problem-Solution (OPS) benchmark is meticulously constructed to quantify the behavior difference of LLMs when evaluating the problem solutions generated by itself and others. Then, to investigate the behavior difference in depth, we conduct a statistical preference analysis oriented on perplexity and find an intriguing phenomenon -- ``LLMs incline to judge solutions with lower perplexity as correct'', which is dubbed as \textit{imbalanced evaluation preference}. To rectify this preference, we regard perplexity as the baton in the algorithm of Group Relative Policy Optimization, supporting the LLMs to explore trajectories that judge lower perplexity as wrong and higher perplexity as correct. Extensive experimental results on our built OPS and existing available critic benchmarks demonstrate the validity of our method.
△ Less
Submitted 13 November, 2025;
originally announced November 2025.
-
Speech-Audio Compositional Attacks on Multimodal LLMs and Their Mitigation with SALMONN-Guard
Authors:
Yudong Yang,
Xuezhen Zhang,
Zhifeng Han,
Siyin Wang,
Jimin Zhuang,
Zengrui Jin,
Jing Shao,
Guangzhi Sun,
Chao Zhang
Abstract:
Recent progress in large language models (LLMs) has enabled understanding of both speech and non-speech audio, but exposing new safety risks emerging from complex audio inputs that are inadequately handled by current safeguards. We introduce SACRED-Bench (Speech-Audio Composition for RED-teaming) to evaluate the robustness of LLMs under complex audio-based attacks. Unlike existing perturbation-bas…
▽ More
Recent progress in large language models (LLMs) has enabled understanding of both speech and non-speech audio, but exposing new safety risks emerging from complex audio inputs that are inadequately handled by current safeguards. We introduce SACRED-Bench (Speech-Audio Composition for RED-teaming) to evaluate the robustness of LLMs under complex audio-based attacks. Unlike existing perturbation-based methods that rely on noise optimization or white-box access, SACRED-Bench exploits speech-audio composition mechanisms. SACRED-Bench adopts three mechanisms: (a) speech overlap and multi-speaker dialogue, which embeds harmful prompts beneath or alongside benign speech; (b) speech-audio mixture, which imply unsafe intent via non-speech audio alongside benign speech or audio; and (c) diverse spoken instruction formats (open-ended QA, yes/no) that evade text-only filters. Experiments show that, even Gemini 2.5 Pro, the state-of-the-art proprietary LLM, still exhibits 66% attack success rate in SACRED-Bench test set, exposing vulnerabilities under cross-modal, speech-audio composition attacks. To bridge this gap, we propose SALMONN-Guard, a safeguard LLM that jointly inspects speech, audio, and text for safety judgments, reducing attack success down to 20%. Our results highlight the need for audio-aware defenses for the safety of multimodal LLMs. The benchmark and SALMONN-Guard checkpoints can be found at https://huggingface.co/datasets/tsinghua-ee/SACRED-Bench. Warning: this paper includes examples that may be offensive or harmful.
△ Less
Submitted 14 November, 2025; v1 submitted 13 November, 2025;
originally announced November 2025.
-
Efficient Thought Space Exploration through Strategic Intervention
Authors:
Ziheng Li,
Hengyi Cai,
Xiaochi Wei,
Yuchen Li,
Shuaiqiang Wang,
Zhi-Hong Deng,
Dawei Yin
Abstract:
While large language models (LLMs) demonstrate emerging reasoning capabilities, current inference-time expansion methods incur prohibitive computational costs by exhaustive sampling. Through analyzing decoding trajectories, we observe that most next-token predictions align well with the golden output, except for a few critical tokens that lead to deviations. Inspired by this phenomenon, we propose…
▽ More
While large language models (LLMs) demonstrate emerging reasoning capabilities, current inference-time expansion methods incur prohibitive computational costs by exhaustive sampling. Through analyzing decoding trajectories, we observe that most next-token predictions align well with the golden output, except for a few critical tokens that lead to deviations. Inspired by this phenomenon, we propose a novel Hint-Practice Reasoning (HPR) framework that operationalizes this insight through two synergistic components: 1) a hinter (powerful LLM) that provides probabilistic guidance at critical decision points, and 2) a practitioner (efficient smaller model) that executes major reasoning steps. The framework's core innovation lies in Distributional Inconsistency Reduction (DIR), a theoretically-grounded metric that dynamically identifies intervention points by quantifying the divergence between practitioner's reasoning trajectory and hinter's expected distribution in a tree-structured probabilistic space. Through iterative tree updates guided by DIR, HPR reweights promising reasoning paths while deprioritizing low-probability branches. Experiments across arithmetic and commonsense reasoning benchmarks demonstrate HPR's state-of-the-art efficiency-accuracy tradeoffs: it achieves comparable performance to self-consistency and MCTS baselines while decoding only 1/5 tokens, and outperforms existing methods by at most 5.1% absolute accuracy while maintaining similar or lower FLOPs.
△ Less
Submitted 13 November, 2025;
originally announced November 2025.
-
Masked Mineral Modeling: Continent-Scale Mineral Prospecting via Geospatial Infilling
Authors:
Sujay Nair,
Evan Coleman,
Sherrie Wang,
Elsa Olivetti
Abstract:
Minerals play a critical role in the advanced energy technologies necessary for decarbonization, but characterizing mineral deposits hidden underground remains costly and challenging. Inspired by recent progress in generative modeling, we develop a learning method which infers the locations of minerals by masking and infilling geospatial maps of resource availability. We demonstrate this technique…
▽ More
Minerals play a critical role in the advanced energy technologies necessary for decarbonization, but characterizing mineral deposits hidden underground remains costly and challenging. Inspired by recent progress in generative modeling, we develop a learning method which infers the locations of minerals by masking and infilling geospatial maps of resource availability. We demonstrate this technique using mineral data for the conterminous United States, and train performant models, with the best achieving Dice coefficients of $0.31 \pm 0.01$ and recalls of $0.22 \pm 0.02$ on test data at 1$\times$1 mi$^2$ spatial resolution. One major advantage of our approach is that it can easily incorporate auxiliary data sources for prediction which may be more abundant than mineral data. We highlight the capabilities of our model by adding input layers derived from geophysical sources, along with a nation-wide ground survey of soils originally intended for agronomic purposes. We find that employing such auxiliary features can improve inference performance, while also enabling model evaluation in regions with no recorded minerals.
△ Less
Submitted 12 November, 2025;
originally announced November 2025.
-
Omnilingual ASR: Open-Source Multilingual Speech Recognition for 1600+ Languages
Authors:
Omnilingual ASR team,
Gil Keren,
Artyom Kozhevnikov,
Yen Meng,
Christophe Ropers,
Matthew Setzler,
Skyler Wang,
Ife Adebara,
Michael Auli,
Can Balioglu,
Kevin Chan,
Chierh Cheng,
Joe Chuang,
Caley Droof,
Mark Duppenthaler,
Paul-Ambroise Duquenne,
Alexander Erben,
Cynthia Gao,
Gabriel Mejia Gonzalez,
Kehan Lyu,
Sagar Miglani,
Vineel Pratap,
Kaushik Ram Sadagopan,
Safiyyah Saleem,
Arina Turkatenko
, et al. (8 additional authors not shown)
Abstract:
Automatic speech recognition (ASR) has advanced in high-resource languages, but most of the world's 7,000+ languages remain unsupported, leaving thousands of long-tail languages behind. Expanding ASR coverage has been costly and limited by architectures that restrict language support, making extension inaccessible to most--all while entangled with ethical concerns when pursued without community co…
▽ More
Automatic speech recognition (ASR) has advanced in high-resource languages, but most of the world's 7,000+ languages remain unsupported, leaving thousands of long-tail languages behind. Expanding ASR coverage has been costly and limited by architectures that restrict language support, making extension inaccessible to most--all while entangled with ethical concerns when pursued without community collaboration. To transcend these limitations, we introduce Omnilingual ASR, the first large-scale ASR system designed for extensibility. Omnilingual ASR enables communities to introduce unserved languages with only a handful of data samples. It scales self-supervised pre-training to 7B parameters to learn robust speech representations and introduces an encoder-decoder architecture designed for zero-shot generalization, leveraging a LLM-inspired decoder. This capability is grounded in a massive and diverse training corpus; by combining breadth of coverage with linguistic variety, the model learns representations robust enough to adapt to unseen languages. Incorporating public resources with community-sourced recordings gathered through compensated local partnerships, Omnilingual ASR expands coverage to over 1,600 languages, the largest such effort to date--including over 500 never before served by ASR. Automatic evaluations show substantial gains over prior systems, especially in low-resource conditions, and strong generalization. We release Omnilingual ASR as a family of models, from 300M variants for low-power devices to 7B for maximum accuracy. We reflect on the ethical considerations shaping this design and conclude by discussing its societal impact. In particular, we highlight how open-sourcing models and tools can lower barriers for researchers and communities, inviting new forms of participation. Open-source artifacts are available at https://github.com/facebookresearch/omnilingual-asr.
△ Less
Submitted 12 November, 2025;
originally announced November 2025.
-
ScaleADFG: Affordance-based Dexterous Functional Grasping via Scalable Dataset
Authors:
Sizhe Wang,
Yifan Yang,
Yongkang Luo,
Daheng Li,
Wei Wei,
Yan Zhang,
Peiying Hu,
Yunjin Fu,
Haonan Duan,
Jia Sun,
Peng Wang
Abstract:
Dexterous functional tool-use grasping is essential for effective robotic manipulation of tools. However, existing approaches face significant challenges in efficiently constructing large-scale datasets and ensuring generalizability to everyday object scales. These issues primarily arise from size mismatches between robotic and human hands, and the diversity in real-world object scales. To address…
▽ More
Dexterous functional tool-use grasping is essential for effective robotic manipulation of tools. However, existing approaches face significant challenges in efficiently constructing large-scale datasets and ensuring generalizability to everyday object scales. These issues primarily arise from size mismatches between robotic and human hands, and the diversity in real-world object scales. To address these limitations, we propose the ScaleADFG framework, which consists of a fully automated dataset construction pipeline and a lightweight grasp generation network. Our dataset introduce an affordance-based algorithm to synthesize diverse tool-use grasp configurations without expert demonstrations, allowing flexible object-hand size ratios and enabling large robotic hands (compared to human hands) to grasp everyday objects effectively. Additionally, we leverage pre-trained models to generate extensive 3D assets and facilitate efficient retrieval of object affordances. Our dataset comprising five object categories, each containing over 1,000 unique shapes with 15 scale variations. After filtering, the dataset includes over 60,000 grasps for each 2 dexterous robotic hands. On top of this dataset, we train a lightweight, single-stage grasp generation network with a notably simple loss design, eliminating the need for post-refinement. This demonstrates the critical importance of large-scale datasets and multi-scale object variant for effective training. Extensive experiments in simulation and on real robot confirm that the ScaleADFG framework exhibits strong adaptability to objects of varying scales, enhancing functional grasp stability, diversity, and generalizability. Moreover, our network exhibits effective zero-shot transfer to real-world objects. Project page is available at https://sizhe-wang.github.io/ScaleADFG_webpage
△ Less
Submitted 12 November, 2025;
originally announced November 2025.
-
CARE-Bench: A Benchmark of Diverse Client Simulations Guided by Expert Principles for Evaluating LLMs in Psychological Counseling
Authors:
Bichen Wang,
Yixin Sun,
Junzhe Wang,
Hao Yang,
Xing Fu,
Yanyan Zhao,
Si Wei,
Shijin Wang,
Bing Qin
Abstract:
The mismatch between the growing demand for psychological counseling and the limited availability of services has motivated research into the application of Large Language Models (LLMs) in this domain. Consequently, there is a need for a robust and unified benchmark to assess the counseling competence of various LLMs. Existing works, however, are limited by unprofessional client simulation, static…
▽ More
The mismatch between the growing demand for psychological counseling and the limited availability of services has motivated research into the application of Large Language Models (LLMs) in this domain. Consequently, there is a need for a robust and unified benchmark to assess the counseling competence of various LLMs. Existing works, however, are limited by unprofessional client simulation, static question-and-answer evaluation formats, and unidimensional metrics. These limitations hinder their effectiveness in assessing a model's comprehensive ability to handle diverse and complex clients. To address this gap, we introduce \textbf{CARE-Bench}, a dynamic and interactive automated benchmark. It is built upon diverse client profiles derived from real-world counseling cases and simulated according to expert guidelines. CARE-Bench provides a multidimensional performance evaluation grounded in established psychological scales. Using CARE-Bench, we evaluate several general-purpose LLMs and specialized counseling models, revealing their current limitations. In collaboration with psychologists, we conduct a detailed analysis of the reasons for LLMs' failures when interacting with clients of different types, which provides directions for developing more comprehensive, universal, and effective counseling models.
△ Less
Submitted 12 November, 2025;
originally announced November 2025.
-
Parameter-Free Clustering via Self-Supervised Consensus Maximization (Extended Version)
Authors:
Lijun Zhang,
Suyuan Liu,
Siwei Wang,
Shengju Yu,
Xueling Zhu,
Miaomiao Li,
Xinwang Liu
Abstract:
Clustering is a fundamental task in unsupervised learning, but most existing methods heavily rely on hyperparameters such as the number of clusters or other sensitive settings, limiting their applicability in real-world scenarios. To address this long-standing challenge, we propose a novel and fully parameter-free clustering framework via Self-supervised Consensus Maximization, named SCMax. Our fr…
▽ More
Clustering is a fundamental task in unsupervised learning, but most existing methods heavily rely on hyperparameters such as the number of clusters or other sensitive settings, limiting their applicability in real-world scenarios. To address this long-standing challenge, we propose a novel and fully parameter-free clustering framework via Self-supervised Consensus Maximization, named SCMax. Our framework performs hierarchical agglomerative clustering and cluster evaluation in a single, integrated process. At each step of agglomeration, it creates a new, structure-aware data representation through a self-supervised learning task guided by the current clustering structure. We then introduce a nearest neighbor consensus score, which measures the agreement between the nearest neighbor-based merge decisions suggested by the original representation and the self-supervised one. The moment at which consensus maximization occurs can serve as a criterion for determining the optimal number of clusters. Extensive experiments on multiple datasets demonstrate that the proposed framework outperforms existing clustering approaches designed for scenarios with an unknown number of clusters.
△ Less
Submitted 13 November, 2025; v1 submitted 12 November, 2025;
originally announced November 2025.
-
Thinking Forward and Backward: Multi-Objective Reinforcement Learning for Retrieval-Augmented Reasoning
Authors:
Wenda Wei,
Yu-An Liu,
Ruqing Zhang,
Jiafeng Guo,
Lixin Su,
Shuaiqiang Wang,
Dawei Yin,
Maarten de Rijke,
Xueqi Cheng
Abstract:
Retrieval-augmented generation (RAG) has proven to be effective in mitigating hallucinations in large language models, yet its effectiveness remains limited in complex, multi-step reasoning scenarios. Recent efforts have incorporated search-based interactions into RAG, enabling iterative reasoning with real-time retrieval. Most approaches rely on outcome-based supervision, offering no explicit gui…
▽ More
Retrieval-augmented generation (RAG) has proven to be effective in mitigating hallucinations in large language models, yet its effectiveness remains limited in complex, multi-step reasoning scenarios. Recent efforts have incorporated search-based interactions into RAG, enabling iterative reasoning with real-time retrieval. Most approaches rely on outcome-based supervision, offering no explicit guidance for intermediate steps. This often leads to reward hacking and degraded response quality. We propose Bi-RAR, a novel retrieval-augmented reasoning framework that evaluates each intermediate step jointly in both forward and backward directions. To assess the information completeness of each step, we introduce a bidirectional information distance grounded in Kolmogorov complexity, approximated via language model generation probabilities. This quantification measures both how far the current reasoning is from the answer and how well it addresses the question. To optimize reasoning under these bidirectional signals, we adopt a multi-objective reinforcement learning framework with a cascading reward structure that emphasizes early trajectory alignment. Empirical results on seven question answering benchmarks demonstrate that Bi-RAR surpasses previous methods and enables efficient interaction and reasoning with the search engine during training and inference.
△ Less
Submitted 13 November, 2025; v1 submitted 12 November, 2025;
originally announced November 2025.
-
Preference is More Than Comparisons: Rethinking Dueling Bandits with Augmented Human Feedback
Authors:
Shengbo Wang,
Hong Sun,
Ke Li
Abstract:
Interactive preference elicitation (IPE) aims to substantially reduce human effort while acquiring human preferences in wide personalization systems. Dueling bandit (DB) algorithms enable optimal decision-making in IPE building on pairwise comparisons. However, they remain inefficient when human feedback is sparse. Existing methods address sparsity by heavily relying on parametric reward models, w…
▽ More
Interactive preference elicitation (IPE) aims to substantially reduce human effort while acquiring human preferences in wide personalization systems. Dueling bandit (DB) algorithms enable optimal decision-making in IPE building on pairwise comparisons. However, they remain inefficient when human feedback is sparse. Existing methods address sparsity by heavily relying on parametric reward models, whose rigid assumptions are vulnerable to misspecification. In contrast, we explore an alternative perspective based on feedback augmentation, and introduce critical improvements to the model-free DB framework. Specifically, we introduce augmented confidence bounds to integrate augmented human feedback under generalized concentration properties, and analyze the multi-factored performance trade-off via regret analysis. Our prototype algorithm achieves competitive performance across several IPE benchmarks, including recommendation, multi-objective optimization, and response optimization for large language models, demonstrating the potential of our approach for provably efficient IPE in broader applications.
△ Less
Submitted 12 November, 2025;
originally announced November 2025.
-
GeoGNN: Quantifying and Mitigating Semantic Drift in Text-Attributed Graphs
Authors:
Liangwei Yang,
Jing Ma,
Jianguo Zhang,
Zhiwei Liu,
Jielin Qiu,
Shirley Kokane,
Shiyu Wang,
Haolin Chen,
Rithesh Murthy,
Ming Zhu,
Huan Wang,
Weiran Yao,
Caiming Xiong,
Shelby Heinecke
Abstract:
Graph neural networks (GNNs) on text--attributed graphs (TAGs) typically encode node texts using pretrained language models (PLMs) and propagate these embeddings through linear neighborhood aggregation. However, the representation spaces of modern PLMs are highly non--linear and geometrically structured, where textual embeddings reside on curved semantic manifolds rather than flat Euclidean spaces…
▽ More
Graph neural networks (GNNs) on text--attributed graphs (TAGs) typically encode node texts using pretrained language models (PLMs) and propagate these embeddings through linear neighborhood aggregation. However, the representation spaces of modern PLMs are highly non--linear and geometrically structured, where textual embeddings reside on curved semantic manifolds rather than flat Euclidean spaces. Linear aggregation on such manifolds inevitably distorts geometry and causes semantic drift--a phenomenon where aggregated representations deviate from the intrinsic manifold, losing semantic fidelity and expressive power. To quantitatively investigate this problem, this work introduces a local PCA--based metric that measures the degree of semantic drift and provides the first quantitative framework to analyze how different aggregation mechanisms affect manifold structure. Building upon these insights, we propose Geodesic Aggregation, a manifold--aware mechanism that aggregates neighbor information along geodesics via log--exp mappings on the unit sphere, ensuring that representations remain faithful to the semantic manifold during message passing. We further develop GeoGNN, a practical instantiation that integrates spherical attention with manifold interpolation. Extensive experiments across four benchmark datasets and multiple text encoders show that GeoGNN substantially mitigates semantic drift and consistently outperforms strong baselines, establishing the importance of manifold--aware aggregation in text--attributed graph learning.
△ Less
Submitted 12 November, 2025;
originally announced November 2025.
-
Learn More, Forget Less: A Gradient-Aware Data Selection Approach for LLM
Authors:
Yibai Liu,
Shihang Wang,
Zeming Liu,
Zheming Song,
Junzhe Wang,
Jingjing Liu,
Qingjie Liu,
Yunhong Wang
Abstract:
Despite large language models (LLMs) have achieved impressive achievements across numerous tasks, supervised fine-tuning (SFT) remains essential for adapting these models to specialized domains. However, SFT for domain specialization can be resource-intensive and sometimes leads to a deterioration in performance over general capabilities due to catastrophic forgetting (CF). To address these issues…
▽ More
Despite large language models (LLMs) have achieved impressive achievements across numerous tasks, supervised fine-tuning (SFT) remains essential for adapting these models to specialized domains. However, SFT for domain specialization can be resource-intensive and sometimes leads to a deterioration in performance over general capabilities due to catastrophic forgetting (CF). To address these issues, we propose a self-adaptive gradient-aware data selection approach (GrADS) for supervised fine-tuning of LLMs, which identifies effective subsets of training data by analyzing gradients obtained from a preliminary training phase. Specifically, we design self-guided criteria that leverage the magnitude and statistical distribution of gradients to prioritize examples that contribute the most to the model's learning process. This approach enables the acquisition of representative samples that enhance LLMs understanding of domain-specific tasks. Through extensive experimentation with various LLMs across diverse domains such as medicine, law, and finance, GrADS has demonstrated significant efficiency and cost-effectiveness. Remarkably, utilizing merely 5% of the selected GrADS data, LLMs already surpass the performance of those fine-tuned on the entire dataset, and increasing to 50% of the data results in significant improvements! With catastrophic forgetting substantially mitigated simultaneously. We will release our code for GrADS later.
△ Less
Submitted 7 November, 2025;
originally announced November 2025.