-
Gemini 2.5: Pushing the Frontier with Advanced Reasoning, Multimodality, Long Context, and Next Generation Agentic Capabilities
Authors:
Gheorghe Comanici,
Eric Bieber,
Mike Schaekermann,
Ice Pasupat,
Noveen Sachdeva,
Inderjit Dhillon,
Marcel Blistein,
Ori Ram,
Dan Zhang,
Evan Rosen,
Luke Marris,
Sam Petulla,
Colin Gaffney,
Asaf Aharoni,
Nathan Lintz,
Tiago Cardal Pais,
Henrik Jacobsson,
Idan Szpektor,
Nan-Jiang Jiang,
Krishna Haridasan,
Ahmed Omran,
Nikunj Saunshi,
Dara Bahri,
Gaurav Mishra,
Eric Chu
, et al. (3284 additional authors not shown)
Abstract:
In this report, we introduce the Gemini 2.X model family: Gemini 2.5 Pro and Gemini 2.5 Flash, as well as our earlier Gemini 2.0 Flash and Flash-Lite models. Gemini 2.5 Pro is our most capable model yet, achieving SoTA performance on frontier coding and reasoning benchmarks. In addition to its incredible coding and reasoning skills, Gemini 2.5 Pro is a thinking model that excels at multimodal unde…
▽ More
In this report, we introduce the Gemini 2.X model family: Gemini 2.5 Pro and Gemini 2.5 Flash, as well as our earlier Gemini 2.0 Flash and Flash-Lite models. Gemini 2.5 Pro is our most capable model yet, achieving SoTA performance on frontier coding and reasoning benchmarks. In addition to its incredible coding and reasoning skills, Gemini 2.5 Pro is a thinking model that excels at multimodal understanding and it is now able to process up to 3 hours of video content. Its unique combination of long context, multimodal and reasoning capabilities can be combined to unlock new agentic workflows. Gemini 2.5 Flash provides excellent reasoning abilities at a fraction of the compute and latency requirements and Gemini 2.0 Flash and Flash-Lite provide high performance at low latency and cost. Taken together, the Gemini 2.X model generation spans the full Pareto frontier of model capability vs cost, allowing users to explore the boundaries of what is possible with complex agentic problem solving.
△ Less
Submitted 22 July, 2025; v1 submitted 7 July, 2025;
originally announced July 2025.
-
MedGemma Technical Report
Authors:
Andrew Sellergren,
Sahar Kazemzadeh,
Tiam Jaroensri,
Atilla Kiraly,
Madeleine Traverse,
Timo Kohlberger,
Shawn Xu,
Fayaz Jamil,
Cían Hughes,
Charles Lau,
Justin Chen,
Fereshteh Mahvar,
Liron Yatziv,
Tiffany Chen,
Bram Sterling,
Stefanie Anna Baby,
Susanna Maria Baby,
Jeremy Lai,
Samuel Schmidgall,
Lu Yang,
Kejia Chen,
Per Bjornsson,
Shashir Reddy,
Ryan Brush,
Kenneth Philbrick
, et al. (56 additional authors not shown)
Abstract:
Artificial intelligence (AI) has significant potential in healthcare applications, but its training and deployment faces challenges due to healthcare's diverse data, complex tasks, and the need to preserve privacy. Foundation models that perform well on medical tasks and require less task-specific tuning data are critical to accelerate the development of healthcare AI applications. We introduce Me…
▽ More
Artificial intelligence (AI) has significant potential in healthcare applications, but its training and deployment faces challenges due to healthcare's diverse data, complex tasks, and the need to preserve privacy. Foundation models that perform well on medical tasks and require less task-specific tuning data are critical to accelerate the development of healthcare AI applications. We introduce MedGemma, a collection of medical vision-language foundation models based on Gemma 3 4B and 27B. MedGemma demonstrates advanced medical understanding and reasoning on images and text, significantly exceeding the performance of similar-sized generative models and approaching the performance of task-specific models, while maintaining the general capabilities of the Gemma 3 base models. For out-of-distribution tasks, MedGemma achieves 2.6-10% improvement on medical multimodal question answering, 15.5-18.1% improvement on chest X-ray finding classification, and 10.8% improvement on agentic evaluations compared to the base models. Fine-tuning MedGemma further improves performance in subdomains, reducing errors in electronic health record information retrieval by 50% and reaching comparable performance to existing specialized state-of-the-art methods for pneumothorax classification and histopathology patch classification. We additionally introduce MedSigLIP, a medically-tuned vision encoder derived from SigLIP. MedSigLIP powers the visual understanding capabilities of MedGemma and as an encoder achieves comparable or better performance than specialized medical image encoders. Taken together, the MedGemma collection provides a strong foundation of medical image and text capabilities, with potential to significantly accelerate medical research and development of downstream applications. The MedGemma collection, including tutorials and model weights, can be found at https://goo.gle/medgemma.
△ Less
Submitted 12 July, 2025; v1 submitted 7 July, 2025;
originally announced July 2025.
-
Gemma 3 Technical Report
Authors:
Gemma Team,
Aishwarya Kamath,
Johan Ferret,
Shreya Pathak,
Nino Vieillard,
Ramona Merhej,
Sarah Perrin,
Tatiana Matejovicova,
Alexandre Ramé,
Morgane Rivière,
Louis Rouillard,
Thomas Mesnard,
Geoffrey Cideron,
Jean-bastien Grill,
Sabela Ramos,
Edouard Yvinec,
Michelle Casbon,
Etienne Pot,
Ivo Penchev,
Gaël Liu,
Francesco Visin,
Kathleen Kenealy,
Lucas Beyer,
Xiaohai Zhai,
Anton Tsitsulin
, et al. (191 additional authors not shown)
Abstract:
We introduce Gemma 3, a multimodal addition to the Gemma family of lightweight open models, ranging in scale from 1 to 27 billion parameters. This version introduces vision understanding abilities, a wider coverage of languages and longer context - at least 128K tokens. We also change the architecture of the model to reduce the KV-cache memory that tends to explode with long context. This is achie…
▽ More
We introduce Gemma 3, a multimodal addition to the Gemma family of lightweight open models, ranging in scale from 1 to 27 billion parameters. This version introduces vision understanding abilities, a wider coverage of languages and longer context - at least 128K tokens. We also change the architecture of the model to reduce the KV-cache memory that tends to explode with long context. This is achieved by increasing the ratio of local to global attention layers, and keeping the span on local attention short. The Gemma 3 models are trained with distillation and achieve superior performance to Gemma 2 for both pre-trained and instruction finetuned versions. In particular, our novel post-training recipe significantly improves the math, chat, instruction-following and multilingual abilities, making Gemma3-4B-IT competitive with Gemma2-27B-IT and Gemma3-27B-IT comparable to Gemini-1.5-Pro across benchmarks. We release all our models to the community.
△ Less
Submitted 25 March, 2025;
originally announced March 2025.
-
On Teacher Hacking in Language Model Distillation
Authors:
Daniil Tiapkin,
Daniele Calandriello,
Johan Ferret,
Sarah Perrin,
Nino Vieillard,
Alexandre Ramé,
Mathieu Blondel
Abstract:
Post-training of language models (LMs) increasingly relies on the following two stages: (i) knowledge distillation, where the LM is trained to imitate a larger teacher LM, and (ii) reinforcement learning from human feedback (RLHF), where the LM is aligned by optimizing a reward model. In the second RLHF stage, a well-known challenge is reward hacking, where the LM over-optimizes the reward model.…
▽ More
Post-training of language models (LMs) increasingly relies on the following two stages: (i) knowledge distillation, where the LM is trained to imitate a larger teacher LM, and (ii) reinforcement learning from human feedback (RLHF), where the LM is aligned by optimizing a reward model. In the second RLHF stage, a well-known challenge is reward hacking, where the LM over-optimizes the reward model. Such phenomenon is in line with Goodhart's law and can lead to degraded performance on the true objective. In this paper, we investigate whether a similar phenomenon, that we call teacher hacking, can occur during knowledge distillation. This could arise because the teacher LM is itself an imperfect approximation of the true distribution. To study this, we propose a controlled experimental setup involving: (i) an oracle LM representing the ground-truth distribution, (ii) a teacher LM distilled from the oracle, and (iii) a student LM distilled from the teacher. Our experiments reveal the following insights. When using a fixed offline dataset for distillation, teacher hacking occurs; moreover, we can detect it by observing when the optimization process deviates from polynomial convergence laws. In contrast, employing online data generation techniques effectively mitigates teacher hacking. More precisely, we identify data diversity as the key factor in preventing hacking. Overall, our findings provide a deeper understanding of the benefits and limitations of distillation for building robust and efficient LMs.
△ Less
Submitted 4 February, 2025;
originally announced February 2025.
-
Humanity's Last Exam
Authors:
Long Phan,
Alice Gatti,
Ziwen Han,
Nathaniel Li,
Josephina Hu,
Hugh Zhang,
Chen Bo Calvin Zhang,
Mohamed Shaaban,
John Ling,
Sean Shi,
Michael Choi,
Anish Agrawal,
Arnav Chopra,
Adam Khoja,
Ryan Kim,
Richard Ren,
Jason Hausenloy,
Oliver Zhang,
Mantas Mazeika,
Dmitry Dodonov,
Tung Nguyen,
Jaeho Lee,
Daron Anderson,
Mikhail Doroshenko,
Alun Cennyth Stokes
, et al. (1084 additional authors not shown)
Abstract:
Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of…
▽ More
Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 2,500 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.
△ Less
Submitted 19 April, 2025; v1 submitted 24 January, 2025;
originally announced January 2025.
-
Diversity-Rewarded CFG Distillation
Authors:
Geoffrey Cideron,
Andrea Agostinelli,
Johan Ferret,
Sertan Girgin,
Romuald Elie,
Olivier Bachem,
Sarah Perrin,
Alexandre Ramé
Abstract:
Generative models are transforming creative domains such as music generation, with inference-time strategies like Classifier-Free Guidance (CFG) playing a crucial role. However, CFG doubles inference cost while limiting originality and diversity across generated contents. In this paper, we introduce diversity-rewarded CFG distillation, a novel finetuning procedure that distills the strengths of CF…
▽ More
Generative models are transforming creative domains such as music generation, with inference-time strategies like Classifier-Free Guidance (CFG) playing a crucial role. However, CFG doubles inference cost while limiting originality and diversity across generated contents. In this paper, we introduce diversity-rewarded CFG distillation, a novel finetuning procedure that distills the strengths of CFG while addressing its limitations. Our approach optimises two training objectives: (1) a distillation objective, encouraging the model alone (without CFG) to imitate the CFG-augmented predictions, and (2) an RL objective with a diversity reward, promoting the generation of diverse outputs for a given prompt. By finetuning, we learn model weights with the ability to generate high-quality and diverse outputs, without any inference overhead. This also unlocks the potential of weight-based model merging strategies: by interpolating between the weights of two models (the first focusing on quality, the second on diversity), we can control the quality-diversity trade-off at deployment time, and even further boost performance. We conduct extensive experiments on the MusicLM (Agostinelli et al., 2023) text-to-music generative model, where our approach surpasses CFG in terms of quality-diversity Pareto optimality. According to human evaluators, our finetuned-then-merged model generates samples with higher quality-diversity than the base model augmented with CFG. Explore our generations at https://google-research.github.io/seanet/musiclm/diverse_music/.
△ Less
Submitted 8 October, 2024;
originally announced October 2024.
-
Assessing the Zero-Shot Capabilities of LLMs for Action Evaluation in RL
Authors:
Eduardo Pignatelli,
Johan Ferret,
Tim Rockäschel,
Edward Grefenstette,
Davide Paglieri,
Samuel Coward,
Laura Toni
Abstract:
The temporal credit assignment problem is a central challenge in Reinforcement Learning (RL), concerned with attributing the appropriate influence to each actions in a trajectory for their ability to achieve a goal. However, when feedback is delayed and sparse, the learning signal is poor, and action evaluation becomes harder. Canonical solutions, such as reward shaping and options, require extens…
▽ More
The temporal credit assignment problem is a central challenge in Reinforcement Learning (RL), concerned with attributing the appropriate influence to each actions in a trajectory for their ability to achieve a goal. However, when feedback is delayed and sparse, the learning signal is poor, and action evaluation becomes harder. Canonical solutions, such as reward shaping and options, require extensive domain knowledge and manual intervention, limiting their scalability and applicability. In this work, we lay the foundations for Credit Assignment with Language Models (CALM), a novel approach that leverages Large Language Models (LLMs) to automate credit assignment via reward shaping and options discovery. CALM uses LLMs to decompose a task into elementary subgoals and assess the achievement of these subgoals in state-action transitions. Every time an option terminates, a subgoal is achieved, and CALM provides an auxiliary reward. This additional reward signal can enhance the learning process when the task reward is sparse and delayed without the need for human-designed rewards. We provide a preliminary evaluation of CALM using a dataset of human-annotated demonstrations from MiniHack, suggesting that LLMs can be effective in assigning credit in zero-shot settings, without examples or LLM fine-tuning. Our preliminary results indicate that the knowledge of LLMs is a promising prior for credit assignment in RL, facilitating the transfer of human knowledge into value functions.
△ Less
Submitted 19 September, 2024;
originally announced September 2024.
-
Gemma 2: Improving Open Language Models at a Practical Size
Authors:
Gemma Team,
Morgane Riviere,
Shreya Pathak,
Pier Giuseppe Sessa,
Cassidy Hardin,
Surya Bhupatiraju,
Léonard Hussenot,
Thomas Mesnard,
Bobak Shahriari,
Alexandre Ramé,
Johan Ferret,
Peter Liu,
Pouya Tafti,
Abe Friesen,
Michelle Casbon,
Sabela Ramos,
Ravin Kumar,
Charline Le Lan,
Sammy Jerome,
Anton Tsitsulin,
Nino Vieillard,
Piotr Stanczyk,
Sertan Girgin,
Nikola Momchev,
Matt Hoffman
, et al. (173 additional authors not shown)
Abstract:
In this work, we introduce Gemma 2, a new addition to the Gemma family of lightweight, state-of-the-art open models, ranging in scale from 2 billion to 27 billion parameters. In this new version, we apply several known technical modifications to the Transformer architecture, such as interleaving local-global attentions (Beltagy et al., 2020a) and group-query attention (Ainslie et al., 2023). We al…
▽ More
In this work, we introduce Gemma 2, a new addition to the Gemma family of lightweight, state-of-the-art open models, ranging in scale from 2 billion to 27 billion parameters. In this new version, we apply several known technical modifications to the Transformer architecture, such as interleaving local-global attentions (Beltagy et al., 2020a) and group-query attention (Ainslie et al., 2023). We also train the 2B and 9B models with knowledge distillation (Hinton et al., 2015) instead of next token prediction. The resulting models deliver the best performance for their size, and even offer competitive alternatives to models that are 2-3 times bigger. We release all our models to the community.
△ Less
Submitted 2 October, 2024; v1 submitted 31 July, 2024;
originally announced August 2024.
-
Conditional Language Policy: A General Framework for Steerable Multi-Objective Finetuning
Authors:
Kaiwen Wang,
Rahul Kidambi,
Ryan Sullivan,
Alekh Agarwal,
Christoph Dann,
Andrea Michi,
Marco Gelmi,
Yunxuan Li,
Raghav Gupta,
Avinava Dubey,
Alexandre Ramé,
Johan Ferret,
Geoffrey Cideron,
Le Hou,
Hongkun Yu,
Amr Ahmed,
Aranyak Mehta,
Léonard Hussenot,
Olivier Bachem,
Edouard Leurent
Abstract:
Reward-based finetuning is crucial for aligning language policies with intended behaviors (e.g., creativity and safety). A key challenge is to develop steerable language models that trade-off multiple (conflicting) objectives in a flexible and efficient manner. This paper presents Conditional Language Policy (CLP), a general framework for finetuning language models on multiple objectives. Building…
▽ More
Reward-based finetuning is crucial for aligning language policies with intended behaviors (e.g., creativity and safety). A key challenge is to develop steerable language models that trade-off multiple (conflicting) objectives in a flexible and efficient manner. This paper presents Conditional Language Policy (CLP), a general framework for finetuning language models on multiple objectives. Building on techniques from multi-task training and parameter-efficient finetuning, CLP learn steerable models that effectively trade-off conflicting objectives at inference time. Notably, this does not require training or maintaining multiple models to achieve different trade-offs between the objectives. Through extensive experiments and ablations on two summarization datasets, we show that CLP learns steerable language models that outperform and Pareto-dominate the existing approaches for multi-objective finetuning.
△ Less
Submitted 23 October, 2024; v1 submitted 22 July, 2024;
originally announced July 2024.
-
BOND: Aligning LLMs with Best-of-N Distillation
Authors:
Pier Giuseppe Sessa,
Robert Dadashi,
Léonard Hussenot,
Johan Ferret,
Nino Vieillard,
Alexandre Ramé,
Bobak Shariari,
Sarah Perrin,
Abe Friesen,
Geoffrey Cideron,
Sertan Girgin,
Piotr Stanczyk,
Andrea Michi,
Danila Sinopalnikov,
Sabela Ramos,
Amélie Héliou,
Aliaksei Severyn,
Matt Hoffman,
Nikola Momchev,
Olivier Bachem
Abstract:
Reinforcement learning from human feedback (RLHF) is a key driver of quality and safety in state-of-the-art large language models. Yet, a surprisingly simple and strong inference-time strategy is Best-of-N sampling that selects the best generation among N candidates. In this paper, we propose Best-of-N Distillation (BOND), a novel RLHF algorithm that seeks to emulate Best-of-N but without its sign…
▽ More
Reinforcement learning from human feedback (RLHF) is a key driver of quality and safety in state-of-the-art large language models. Yet, a surprisingly simple and strong inference-time strategy is Best-of-N sampling that selects the best generation among N candidates. In this paper, we propose Best-of-N Distillation (BOND), a novel RLHF algorithm that seeks to emulate Best-of-N but without its significant computational overhead at inference time. Specifically, BOND is a distribution matching algorithm that forces the distribution of generations from the policy to get closer to the Best-of-N distribution. We use the Jeffreys divergence (a linear combination of forward and backward KL) to balance between mode-covering and mode-seeking behavior, and derive an iterative formulation that utilizes a moving anchor for efficiency. We demonstrate the effectiveness of our approach and several design choices through experiments on abstractive summarization and Gemma models. Aligning Gemma policies with BOND outperforms other RLHF algorithms by improving results on several benchmarks.
△ Less
Submitted 19 July, 2024;
originally announced July 2024.
-
WARP: On the Benefits of Weight Averaged Rewarded Policies
Authors:
Alexandre Ramé,
Johan Ferret,
Nino Vieillard,
Robert Dadashi,
Léonard Hussenot,
Pierre-Louis Cedoz,
Pier Giuseppe Sessa,
Sertan Girgin,
Arthur Douillard,
Olivier Bachem
Abstract:
Reinforcement learning from human feedback (RLHF) aligns large language models (LLMs) by encouraging their generations to have high rewards, using a reward model trained on human preferences. To prevent the forgetting of pre-trained knowledge, RLHF usually incorporates a KL regularization; this forces the policy to remain close to its supervised fine-tuned initialization, though it hinders the rew…
▽ More
Reinforcement learning from human feedback (RLHF) aligns large language models (LLMs) by encouraging their generations to have high rewards, using a reward model trained on human preferences. To prevent the forgetting of pre-trained knowledge, RLHF usually incorporates a KL regularization; this forces the policy to remain close to its supervised fine-tuned initialization, though it hinders the reward optimization. To tackle the trade-off between KL and reward, in this paper we introduce a novel alignment strategy named Weight Averaged Rewarded Policies (WARP). WARP merges policies in the weight space at three distinct stages. First, it uses the exponential moving average of the policy as a dynamic anchor in the KL regularization. Second, it applies spherical interpolation to merge independently fine-tuned policies into a new enhanced one. Third, it linearly interpolates between this merged model and the initialization, to recover features from pre-training. This procedure is then applied iteratively, with each iteration's final model used as an advanced initialization for the next, progressively refining the KL-reward Pareto front, achieving superior rewards at fixed KL. Experiments with GEMMA policies validate that WARP improves their quality and alignment, outperforming other open-source LLMs.
△ Less
Submitted 24 June, 2024;
originally announced June 2024.
-
RecurrentGemma: Moving Past Transformers for Efficient Open Language Models
Authors:
Aleksandar Botev,
Soham De,
Samuel L Smith,
Anushan Fernando,
George-Cristian Muraru,
Ruba Haroun,
Leonard Berrada,
Razvan Pascanu,
Pier Giuseppe Sessa,
Robert Dadashi,
Léonard Hussenot,
Johan Ferret,
Sertan Girgin,
Olivier Bachem,
Alek Andreev,
Kathleen Kenealy,
Thomas Mesnard,
Cassidy Hardin,
Surya Bhupatiraju,
Shreya Pathak,
Laurent Sifre,
Morgane Rivière,
Mihir Sanjay Kale,
Juliette Love,
Pouya Tafti
, et al. (37 additional authors not shown)
Abstract:
We introduce RecurrentGemma, a family of open language models which uses Google's novel Griffin architecture. Griffin combines linear recurrences with local attention to achieve excellent performance on language. It has a fixed-sized state, which reduces memory use and enables efficient inference on long sequences. We provide two sizes of models, containing 2B and 9B parameters, and provide pre-tr…
▽ More
We introduce RecurrentGemma, a family of open language models which uses Google's novel Griffin architecture. Griffin combines linear recurrences with local attention to achieve excellent performance on language. It has a fixed-sized state, which reduces memory use and enables efficient inference on long sequences. We provide two sizes of models, containing 2B and 9B parameters, and provide pre-trained and instruction tuned variants for both. Our models achieve comparable performance to similarly-sized Gemma baselines despite being trained on fewer tokens.
△ Less
Submitted 28 August, 2024; v1 submitted 11 April, 2024;
originally announced April 2024.
-
Gemma: Open Models Based on Gemini Research and Technology
Authors:
Gemma Team,
Thomas Mesnard,
Cassidy Hardin,
Robert Dadashi,
Surya Bhupatiraju,
Shreya Pathak,
Laurent Sifre,
Morgane Rivière,
Mihir Sanjay Kale,
Juliette Love,
Pouya Tafti,
Léonard Hussenot,
Pier Giuseppe Sessa,
Aakanksha Chowdhery,
Adam Roberts,
Aditya Barua,
Alex Botev,
Alex Castro-Ros,
Ambrose Slone,
Amélie Héliou,
Andrea Tacchetti,
Anna Bulanova,
Antonia Paterson,
Beth Tsai,
Bobak Shahriari
, et al. (83 additional authors not shown)
Abstract:
This work introduces Gemma, a family of lightweight, state-of-the art open models built from the research and technology used to create Gemini models. Gemma models demonstrate strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Ge…
▽ More
This work introduces Gemma, a family of lightweight, state-of-the art open models built from the research and technology used to create Gemini models. Gemma models demonstrate strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Gemma outperforms similarly sized open models on 11 out of 18 text-based tasks, and we present comprehensive evaluations of safety and responsibility aspects of the models, alongside a detailed description of model development. We believe the responsible release of LLMs is critical for improving the safety of frontier models, and for enabling the next wave of LLM innovations.
△ Less
Submitted 16 April, 2024; v1 submitted 13 March, 2024;
originally announced March 2024.
-
Direct Language Model Alignment from Online AI Feedback
Authors:
Shangmin Guo,
Biao Zhang,
Tianlin Liu,
Tianqi Liu,
Misha Khalman,
Felipe Llinares,
Alexandre Rame,
Thomas Mesnard,
Yao Zhao,
Bilal Piot,
Johan Ferret,
Mathieu Blondel
Abstract:
Direct alignment from preferences (DAP) methods, such as DPO, have recently emerged as efficient alternatives to reinforcement learning from human feedback (RLHF), that do not require a separate reward model. However, the preference datasets used in DAP methods are usually collected ahead of training and never updated, thus the feedback is purely offline. Moreover, responses in these datasets are…
▽ More
Direct alignment from preferences (DAP) methods, such as DPO, have recently emerged as efficient alternatives to reinforcement learning from human feedback (RLHF), that do not require a separate reward model. However, the preference datasets used in DAP methods are usually collected ahead of training and never updated, thus the feedback is purely offline. Moreover, responses in these datasets are often sampled from a language model distinct from the one being aligned, and since the model evolves over training, the alignment phase is inevitably off-policy. In this study, we posit that online feedback is key and improves DAP methods. Our method, online AI feedback (OAIF), uses an LLM as annotator: on each training iteration, we sample two responses from the current model and prompt the LLM annotator to choose which one is preferred, thus providing online feedback. Despite its simplicity, we demonstrate via human evaluation in several tasks that OAIF outperforms both offline DAP and RLHF methods. We further show that the feedback leveraged in OAIF is easily controllable, via instruction prompts to the LLM annotator.
△ Less
Submitted 29 February, 2024; v1 submitted 7 February, 2024;
originally announced February 2024.
-
WARM: On the Benefits of Weight Averaged Reward Models
Authors:
Alexandre Ramé,
Nino Vieillard,
Léonard Hussenot,
Robert Dadashi,
Geoffrey Cideron,
Olivier Bachem,
Johan Ferret
Abstract:
Aligning large language models (LLMs) with human preferences through reinforcement learning (RLHF) can lead to reward hacking, where LLMs exploit failures in the reward model (RM) to achieve seemingly high rewards without meeting the underlying objectives. We identify two primary challenges when designing RMs to mitigate reward hacking: distribution shifts during the RL process and inconsistencies…
▽ More
Aligning large language models (LLMs) with human preferences through reinforcement learning (RLHF) can lead to reward hacking, where LLMs exploit failures in the reward model (RM) to achieve seemingly high rewards without meeting the underlying objectives. We identify two primary challenges when designing RMs to mitigate reward hacking: distribution shifts during the RL process and inconsistencies in human preferences. As a solution, we propose Weight Averaged Reward Models (WARM), first fine-tuning multiple RMs, then averaging them in the weight space. This strategy follows the observation that fine-tuned weights remain linearly mode connected when sharing the same pre-training. By averaging weights, WARM improves efficiency compared to the traditional ensembling of predictions, while improving reliability under distribution shifts and robustness to preference inconsistencies. Our experiments on summarization tasks, using best-of-N and RL methods, shows that WARM improves the overall quality and alignment of LLM predictions; for example, a policy RL fine-tuned with WARM has a 79.4% win rate against a policy RL fine-tuned with a single RM.
△ Less
Submitted 22 January, 2024;
originally announced January 2024.
-
Gemini: A Family of Highly Capable Multimodal Models
Authors:
Gemini Team,
Rohan Anil,
Sebastian Borgeaud,
Jean-Baptiste Alayrac,
Jiahui Yu,
Radu Soricut,
Johan Schalkwyk,
Andrew M. Dai,
Anja Hauth,
Katie Millican,
David Silver,
Melvin Johnson,
Ioannis Antonoglou,
Julian Schrittwieser,
Amelia Glaese,
Jilin Chen,
Emily Pitler,
Timothy Lillicrap,
Angeliki Lazaridou,
Orhan Firat,
James Molloy,
Michael Isard,
Paul R. Barham,
Tom Hennigan,
Benjamin Lee
, et al. (1326 additional authors not shown)
Abstract:
This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultr…
▽ More
This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of the Gemini family in cross-modal reasoning and language understanding will enable a wide variety of use cases. We discuss our approach toward post-training and deploying Gemini models responsibly to users through services including Gemini, Gemini Advanced, Google AI Studio, and Cloud Vertex AI.
△ Less
Submitted 9 May, 2025; v1 submitted 18 December, 2023;
originally announced December 2023.
-
A Survey of Temporal Credit Assignment in Deep Reinforcement Learning
Authors:
Eduardo Pignatelli,
Johan Ferret,
Matthieu Geist,
Thomas Mesnard,
Hado van Hasselt,
Olivier Pietquin,
Laura Toni
Abstract:
The Credit Assignment Problem (CAP) refers to the longstanding challenge of Reinforcement Learning (RL) agents to associate actions with their long-term consequences. Solving the CAP is a crucial step towards the successful deployment of RL in the real world since most decision problems provide feedback that is noisy, delayed, and with little or no information about the causes. These conditions ma…
▽ More
The Credit Assignment Problem (CAP) refers to the longstanding challenge of Reinforcement Learning (RL) agents to associate actions with their long-term consequences. Solving the CAP is a crucial step towards the successful deployment of RL in the real world since most decision problems provide feedback that is noisy, delayed, and with little or no information about the causes. These conditions make it hard to distinguish serendipitous outcomes from those caused by informed decision-making. However, the mathematical nature of credit and the CAP remains poorly understood and defined. In this survey, we review the state of the art of Temporal Credit Assignment (CA) in deep RL. We propose a unifying formalism for credit that enables equitable comparisons of state-of-the-art algorithms and improves our understanding of the trade-offs between the various methods. We cast the CAP as the problem of learning the influence of an action over an outcome from a finite amount of experience. We discuss the challenges posed by delayed effects, transpositions, and a lack of action influence, and analyse how existing methods aim to address them. Finally, we survey the protocols to evaluate a credit assignment method and suggest ways to diagnose the sources of struggle for different methods. Overall, this survey provides an overview of the field for new-entry practitioners and researchers, it offers a coherent perspective for scholars looking to expedite the starting stages of a new study on the CAP, and it suggests potential directions for future research.
△ Less
Submitted 4 July, 2024; v1 submitted 2 December, 2023;
originally announced December 2023.
-
RLAIF vs. RLHF: Scaling Reinforcement Learning from Human Feedback with AI Feedback
Authors:
Harrison Lee,
Samrat Phatale,
Hassan Mansoor,
Thomas Mesnard,
Johan Ferret,
Kellie Lu,
Colton Bishop,
Ethan Hall,
Victor Carbune,
Abhinav Rastogi,
Sushant Prakash
Abstract:
Reinforcement learning from human feedback (RLHF) has proven effective in aligning large language models (LLMs) with human preferences, but gathering high-quality preference labels is expensive. RL from AI Feedback (RLAIF), introduced in Bai et al., offers a promising alternative that trains the reward model (RM) on preferences generated by an off-the-shelf LLM. Across the tasks of summarization,…
▽ More
Reinforcement learning from human feedback (RLHF) has proven effective in aligning large language models (LLMs) with human preferences, but gathering high-quality preference labels is expensive. RL from AI Feedback (RLAIF), introduced in Bai et al., offers a promising alternative that trains the reward model (RM) on preferences generated by an off-the-shelf LLM. Across the tasks of summarization, helpful dialogue generation, and harmless dialogue generation, we show that RLAIF achieves comparable performance to RLHF. Furthermore, we take a step towards "self-improvement" by demonstrating that RLAIF can outperform a supervised fine-tuned baseline even when the AI labeler is the same size as the policy, or even the exact same checkpoint as the initial policy. Finally, we introduce direct-RLAIF (d-RLAIF) - a technique that circumvents RM training by obtaining rewards directly from an off-the-shelf LLM during RL, which achieves superior performance to canonical RLAIF. Our results suggest that RLAIF can achieve performance on-par with using human feedback, offering a potential solution to the scalability limitations of RLHF.
△ Less
Submitted 3 September, 2024; v1 submitted 1 September, 2023;
originally announced September 2023.
-
Factually Consistent Summarization via Reinforcement Learning with Textual Entailment Feedback
Authors:
Paul Roit,
Johan Ferret,
Lior Shani,
Roee Aharoni,
Geoffrey Cideron,
Robert Dadashi,
Matthieu Geist,
Sertan Girgin,
Léonard Hussenot,
Orgad Keller,
Nikola Momchev,
Sabela Ramos,
Piotr Stanczyk,
Nino Vieillard,
Olivier Bachem,
Gal Elidan,
Avinatan Hassidim,
Olivier Pietquin,
Idan Szpektor
Abstract:
Despite the seeming success of contemporary grounded text generation systems, they often tend to generate factually inconsistent text with respect to their input. This phenomenon is emphasized in tasks like summarization, in which the generated summaries should be corroborated by their source article. In this work, we leverage recent progress on textual entailment models to directly address this p…
▽ More
Despite the seeming success of contemporary grounded text generation systems, they often tend to generate factually inconsistent text with respect to their input. This phenomenon is emphasized in tasks like summarization, in which the generated summaries should be corroborated by their source article. In this work, we leverage recent progress on textual entailment models to directly address this problem for abstractive summarization systems. We use reinforcement learning with reference-free, textual entailment rewards to optimize for factual consistency and explore the ensuing trade-offs, as improved consistency may come at the cost of less informative or more extractive summaries. Our results, according to both automatic metrics and human evaluation, show that our method considerably improves the faithfulness, salience, and conciseness of the generated summaries.
△ Less
Submitted 31 May, 2023;
originally announced June 2023.
-
Lazy-MDPs: Towards Interpretable Reinforcement Learning by Learning When to Act
Authors:
Alexis Jacq,
Johan Ferret,
Olivier Pietquin,
Matthieu Geist
Abstract:
Traditionally, Reinforcement Learning (RL) aims at deciding how to act optimally for an artificial agent. We argue that deciding when to act is equally important. As humans, we drift from default, instinctive or memorized behaviors to focused, thought-out behaviors when required by the situation. To enhance RL agents with this aptitude, we propose to augment the standard Markov Decision Process an…
▽ More
Traditionally, Reinforcement Learning (RL) aims at deciding how to act optimally for an artificial agent. We argue that deciding when to act is equally important. As humans, we drift from default, instinctive or memorized behaviors to focused, thought-out behaviors when required by the situation. To enhance RL agents with this aptitude, we propose to augment the standard Markov Decision Process and make a new mode of action available: being lazy, which defers decision-making to a default policy. In addition, we penalize non-lazy actions in order to encourage minimal effort and have agents focus on critical decisions only. We name the resulting formalism lazy-MDPs. We study the theoretical properties of lazy-MDPs, expressing value functions and characterizing optimal solutions. Then we empirically demonstrate that policies learned in lazy-MDPs generally come with a form of interpretability: by construction, they show us the states where the agent takes control over the default policy. We deem those states and corresponding actions important since they explain the difference in performance between the default and the new, lazy policy. With suboptimal policies as default (pretrained or random), we observe that agents are able to get competitive performance in Atari games while only taking control in a limited subset of states.
△ Less
Submitted 16 March, 2022;
originally announced March 2022.
-
More Efficient Exploration with Symbolic Priors on Action Sequence Equivalences
Authors:
Toby Johnstone,
Nathan Grinsztajn,
Johan Ferret,
Philippe Preux
Abstract:
Incorporating prior knowledge in reinforcement learning algorithms is mainly an open question. Even when insights about the environment dynamics are available, reinforcement learning is traditionally used in a tabula rasa setting and must explore and learn everything from scratch. In this paper, we consider the problem of exploiting priors about action sequence equivalence: that is, when different…
▽ More
Incorporating prior knowledge in reinforcement learning algorithms is mainly an open question. Even when insights about the environment dynamics are available, reinforcement learning is traditionally used in a tabula rasa setting and must explore and learn everything from scratch. In this paper, we consider the problem of exploiting priors about action sequence equivalence: that is, when different sequences of actions produce the same effect. We propose a new local exploration strategy calibrated to minimize collisions and maximize new state visitations. We show that this strategy can be computed at little cost, by solving a convex optimization problem. By replacing the usual epsilon-greedy strategy in a DQN, we demonstrate its potential in several environments with various dynamic structures.
△ Less
Submitted 7 November, 2021; v1 submitted 20 October, 2021;
originally announced October 2021.
-
There Is No Turning Back: A Self-Supervised Approach for Reversibility-Aware Reinforcement Learning
Authors:
Nathan Grinsztajn,
Johan Ferret,
Olivier Pietquin,
Philippe Preux,
Matthieu Geist
Abstract:
We propose to learn to distinguish reversible from irreversible actions for better informed decision-making in Reinforcement Learning (RL). From theoretical considerations, we show that approximate reversibility can be learned through a simple surrogate task: ranking randomly sampled trajectory events in chronological order. Intuitively, pairs of events that are always observed in the same order a…
▽ More
We propose to learn to distinguish reversible from irreversible actions for better informed decision-making in Reinforcement Learning (RL). From theoretical considerations, we show that approximate reversibility can be learned through a simple surrogate task: ranking randomly sampled trajectory events in chronological order. Intuitively, pairs of events that are always observed in the same order are likely to be separated by an irreversible sequence of actions. Conveniently, learning the temporal order of events can be done in a fully self-supervised way, which we use to estimate the reversibility of actions from experience, without any priors. We propose two different strategies that incorporate reversibility in RL agents, one strategy for exploration (RAE) and one strategy for control (RAC). We demonstrate the potential of reversibility-aware agents in several environments, including the challenging Sokoban game. In synthetic tasks, we show that we can learn control policies that never fail and reduce to zero the side-effects of interactions, even without access to the reward function.
△ Less
Submitted 29 October, 2021; v1 submitted 8 June, 2021;
originally announced June 2021.
-
Adversarially Guided Actor-Critic
Authors:
Yannis Flet-Berliac,
Johan Ferret,
Olivier Pietquin,
Philippe Preux,
Matthieu Geist
Abstract:
Despite definite success in deep reinforcement learning problems, actor-critic algorithms are still confronted with sample inefficiency in complex environments, particularly in tasks where efficient exploration is a bottleneck. These methods consider a policy (the actor) and a value function (the critic) whose respective losses are built using different motivations and approaches. This paper intro…
▽ More
Despite definite success in deep reinforcement learning problems, actor-critic algorithms are still confronted with sample inefficiency in complex environments, particularly in tasks where efficient exploration is a bottleneck. These methods consider a policy (the actor) and a value function (the critic) whose respective losses are built using different motivations and approaches. This paper introduces a third protagonist: the adversary. While the adversary mimics the actor by minimizing the KL-divergence between their respective action distributions, the actor, in addition to learning to solve the task, tries to differentiate itself from the adversary predictions. This novel objective stimulates the actor to follow strategies that could not have been correctly predicted from previous trajectories, making its behavior innovative in tasks where the reward is extremely rare. Our experimental analysis shows that the resulting Adversarially Guided Actor-Critic (AGAC) algorithm leads to more exhaustive exploration. Notably, AGAC outperforms current state-of-the-art methods on a set of various hard-exploration and procedurally-generated tasks.
△ Less
Submitted 8 February, 2021;
originally announced February 2021.
-
Self-Imitation Advantage Learning
Authors:
Johan Ferret,
Olivier Pietquin,
Matthieu Geist
Abstract:
Self-imitation learning is a Reinforcement Learning (RL) method that encourages actions whose returns were higher than expected, which helps in hard exploration and sparse reward problems. It was shown to improve the performance of on-policy actor-critic methods in several discrete control tasks. Nevertheless, applying self-imitation to the mostly action-value based off-policy RL methods is not st…
▽ More
Self-imitation learning is a Reinforcement Learning (RL) method that encourages actions whose returns were higher than expected, which helps in hard exploration and sparse reward problems. It was shown to improve the performance of on-policy actor-critic methods in several discrete control tasks. Nevertheless, applying self-imitation to the mostly action-value based off-policy RL methods is not straightforward. We propose SAIL, a novel generalization of self-imitation learning for off-policy RL, based on a modification of the Bellman optimality operator that we connect to Advantage Learning. Crucially, our method mitigates the problem of stale returns by choosing the most optimistic return estimate between the observed return and the current action-value for self-imitation. We demonstrate the empirical effectiveness of SAIL on the Arcade Learning Environment, with a focus on hard exploration games.
△ Less
Submitted 22 December, 2020;
originally announced December 2020.
-
Acme: A Research Framework for Distributed Reinforcement Learning
Authors:
Matthew W. Hoffman,
Bobak Shahriari,
John Aslanides,
Gabriel Barth-Maron,
Nikola Momchev,
Danila Sinopalnikov,
Piotr Stańczyk,
Sabela Ramos,
Anton Raichuk,
Damien Vincent,
Léonard Hussenot,
Robert Dadashi,
Gabriel Dulac-Arnold,
Manu Orsini,
Alexis Jacq,
Johan Ferret,
Nino Vieillard,
Seyed Kamyar Seyed Ghasemipour,
Sertan Girgin,
Olivier Pietquin,
Feryal Behbahani,
Tamara Norman,
Abbas Abdolmaleki,
Albin Cassirer,
Fan Yang
, et al. (14 additional authors not shown)
Abstract:
Deep reinforcement learning (RL) has led to many recent and groundbreaking advances. However, these advances have often come at the cost of both increased scale in the underlying architectures being trained as well as increased complexity of the RL algorithms used to train them. These increases have in turn made it more difficult for researchers to rapidly prototype new ideas or reproduce publishe…
▽ More
Deep reinforcement learning (RL) has led to many recent and groundbreaking advances. However, these advances have often come at the cost of both increased scale in the underlying architectures being trained as well as increased complexity of the RL algorithms used to train them. These increases have in turn made it more difficult for researchers to rapidly prototype new ideas or reproduce published RL algorithms. To address these concerns this work describes Acme, a framework for constructing novel RL algorithms that is specifically designed to enable agents that are built using simple, modular components that can be used at various scales of execution. While the primary goal of Acme is to provide a framework for algorithm development, a secondary goal is to provide simple reference implementations of important or state-of-the-art algorithms. These implementations serve both as a validation of our design decisions as well as an important contribution to reproducibility in RL research. In this work we describe the major design decisions made within Acme and give further details as to how its components can be used to implement various algorithms. Our experiments provide baselines for a number of common and state-of-the-art algorithms as well as showing how these algorithms can be scaled up for much larger and more complex environments. This highlights one of the primary advantages of Acme, namely that it can be used to implement large, distributed RL algorithms that can run at massive scales while still maintaining the inherent readability of that implementation.
This work presents a second version of the paper which coincides with an increase in modularity, additional emphasis on offline, imitation and learning from demonstrations algorithms, as well as various new agents implemented as part of Acme.
△ Less
Submitted 20 September, 2022; v1 submitted 1 June, 2020;
originally announced June 2020.
-
Self-Attentional Credit Assignment for Transfer in Reinforcement Learning
Authors:
Johan Ferret,
Raphaël Marinier,
Matthieu Geist,
Olivier Pietquin
Abstract:
The ability to transfer knowledge to novel environments and tasks is a sensible desiderata for general learning agents. Despite the apparent promises, transfer in RL is still an open and little exploited research area. In this paper, we take a brand-new perspective about transfer: we suggest that the ability to assign credit unveils structural invariants in the tasks that can be transferred to mak…
▽ More
The ability to transfer knowledge to novel environments and tasks is a sensible desiderata for general learning agents. Despite the apparent promises, transfer in RL is still an open and little exploited research area. In this paper, we take a brand-new perspective about transfer: we suggest that the ability to assign credit unveils structural invariants in the tasks that can be transferred to make RL more sample-efficient. Our main contribution is SECRET, a novel approach to transfer learning for RL that uses a backward-view credit assignment mechanism based on a self-attentive architecture. Two aspects are key to its generality: it learns to assign credit as a separate offline supervised process and exclusively modifies the reward function. Consequently, it can be supplemented by transfer methods that do not modify the reward function and it can be plugged on top of any RL algorithm.
△ Less
Submitted 22 November, 2019; v1 submitted 18 July, 2019;
originally announced July 2019.