这是indexloc提供的服务,不要输入任何密码
License: CC BY 4.0
arXiv:2402.06137v2 [cs.LG] 21 Mar 2024

 

On the Privacy of Selection Mechanisms with Gaussian Noise


 


Jonathan Lebensold                        Doina Precup                        Borja Balle

McGill University, Mila                        McGill University, Mila, Google DeepMind                        Google DeepMind

Abstract

Report Noisy Max and Above Threshold are two classical differentially private (DP) selection mechanisms. Their output is obtained by adding noise to a sequence of low-sensitivity queries and reporting the identity of the query whose (noisy) answer satisfies a certain condition. Pure DP guarantees for these mechanisms are easy to obtain when Laplace noise is added to the queries. On the other hand, when instantiated using Gaussian noise, standard analyses only yield approximate DP guarantees despite the fact that the outputs of these mechanisms lie in a discrete space. In this work, we revisit the analysis of Report Noisy Max and Above Threshold with Gaussian noise and show that, under the additional assumption that the underlying queries are bounded, it is possible to provide pure ex-ante DP bounds for Report Noisy Max and pure ex-post DP bounds for Above Threshold. The resulting bounds are tight and depend on closed-form expressions that can be numerically evaluated using standard methods. Empirically we find these lead to tighter privacy accounting in the high privacy, low data regime. Further, we propose a simple privacy filter for composing pure ex-post DP guarantees, and use it to derive a fully adaptive Gaussian Sparse Vector Technique mechanism. Finally, we provide experiments on mobility and energy consumption datasets demonstrating that our Sparse Vector Technique is practically competitive with previous approaches and requires less hyper-parameter tuning.

1 INTRODUCTION

Differential Privacy (DP) (Dwork,, 2006) has become the standard framework used for the private release of sensitive statistics. In particular, DP has been embraced by industry and governments to guarantee that potentially sensitive statistics cannot be linked back to individual users. For example, during the COVID-19 pandemic, Google Maps mobility data was published with DP (Aktay et al.,, 2020) in order for public health authorities to better understand various curve-flattening measures (such as work-from-home, or shelter-in-place). Recently, the Wikimedia Foundation deployed DP for their page-level visit statistics (Desfontaines,, 2023).

Underpinning the design of differentially private mechanisms is a fundamental trade-off between privacy and utility characterized by the Fundamental Law of Information Recovery stating that “overly accurate answers to too many questions will destroy privacy in a spectacular way” (Dwork and Roth,, 2014). In practice this imposes a limit on how many statistics can be privately released to a desired accuracy within a pre-specified privacy budget. In applications where the space of possible statistics is too large to allow for a full private and accurate release, analysts can overcome the privacy-utility trade-off by identifying and releasing only those statistics that contain relevant information. This is necessary for example in periodic data collection where users contribute many times to a dataset and relevant statistics must be released repeatedly (e.g. to report temporal trends, change points, extreme events, etc.) (Hu et al.,, 2021; Wang et al.,, 2016; Xu et al.,, 2017). A notable example is the use of smart meters in energy grids, where statistics can help manage electrical demand and encourage smoother consumption but can also be used to infer information like income, occupancy, etc. (Ács and Castelluccia,, 2011; Bohli et al.,, 2010; Haji Mirzaee et al.,, 2022).

Private selection mechanisms aim to identify relevant statistics. This problem is usually framed as query selection: an analyst defines a collection of queries against the target dataset, and a private mechanism is used to identify queries returning “abnormally” large values. Two notable settings arise: the offline case, where all the queries can be specified in advance, and the online case, where the analyst can adaptively select queries based on the previous ones. In the offline setting, one of the best known private selection mechanisms is Report Noisy Max whereby the analyst submits a collection of low-sensitivity scalar queries. The mechanism then adds noise to the values of all the queries and returns the index of the query attaining the largest (noisy) value. The Exponential Mechanism (Dwork and Roth,, 2014) and Permute-and-flip are commonly used for offline selection and are generally considered best-in-class (McKenna and Sheldon,, 2020).

In the online setting, the cornerstone selection mechanism is Above Threshold, where the analyst submits a threshold and a sequence of (potentially adaptive) low-sensitivity scalar queries to which the mechanism iteratively computes answers, until a noisy value exceeds the target threshold. Running Above Threshold repeatedly is called the Sparse Vector Technique (Dwork et al.,, 2009), and is a common privacy primitive in change-point detection, empirical risk minimization, density estimation and other online learning algorithms (Zhang et al.,, 2021; Ligett et al.,, 2017; Dwork and Roth,, 2014; Cummings et al.,, 2018).

When Laplace noise is used, Above Threshold and Report Noisy Max offer pure privacy guarantees – the strongest type of DP guarantee which does not have to account for some small failure probability. The use of the Laplace distribution also has the advantage of making the mathematical analysis of the privacy guarantees relatively simple; however, since the noise distribution is less concentrated than the Gaussian distribution, it can lead to a less accurate mechanism. Replacing the Laplace distribution with a Gaussian distribution is advantageous in many DP mechanisms, including online query selection (Abadi et al.,, 2016; Zhu and Wang,, 2020; Papernot et al.,, 2018).

Contributions.

In this paper we revisit the privacy analysis of the Above Threshold mechanism instantiated with Gaussian noise. Our main observation is that under the mild assumption that the queries submitted are uniformly bounded (in addition to low-sensitivity), we can provide pure DP guarantees that can be computed using standard numerical tools. In particular, we provide pure ex-post111This is a guarantee that depends on the output produced by the mechanism; see Section 3 for details. DP guarantees for Gaussian Above Threshold. In the process, we also develop an ex-ante DP guarantee for Gaussian Report Noisy Max. Our analysis relies on identifying the worst case values for the query answers on a pair of neighboring datasets, a technique which might be of independent interest. Empirically, we find that these privacy bounds lead to tighter privacy accounting in the high privacy, low data regime, when compared to other Gaussian-based mechanisms.

Further, we define a meta-algorithm that composes Gaussian Above Threshold with ex-post DP guarantees. Thus, we derive a fully-adaptive Sparse Vector Technique (SVT), which we call Filtered Self-Reporting Composition (FSRC). Our method is particularly appealing since an analyst need not choose the number of releases or the maximum number of queries up front.

Finally, we provide experiments on mobility and energy consumption datasets demonstrating that our analyses yield mechanisms that in practice match or outperform previous approaches.

2 PRELIMINARIES

Differential Privacy.

Throughout we will be considering randomized mechanisms operating on some dataset D𝒳𝐷𝒳D\in\mathcal{X}italic_D ∈ caligraphic_X. Two datasets D𝐷Ditalic_D and Dsuperscript𝐷D^{\prime}italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT are said to be neighboring, denoted DDsimilar-to-or-equals𝐷superscript𝐷D\simeq D^{\prime}italic_D ≃ italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, if they differ in the data of a single individual (e.g. one user is added, removed, or replaced by another).

Definition 1 (DP (Dwork et al.,, 2006)).

Let ϵ0italic-ϵ0\epsilon\geq 0italic_ϵ ≥ 0 and δ0𝛿0\delta\geq 0italic_δ ≥ 0. A randomized mechanism M:𝒳𝒪:𝑀𝒳𝒪M:\mathcal{X}\rightarrow\mathcal{O}italic_M : caligraphic_X → caligraphic_O, is (ϵ,δ)italic-ϵ𝛿(\epsilon,\delta)( italic_ϵ , italic_δ )-DP if for every pair of neighboring datasets DDsimilar-to-or-equals𝐷superscript𝐷D\simeq D^{\prime}italic_D ≃ italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and every subset S𝒪𝑆𝒪S\subseteq\mathcal{O}italic_S ⊆ caligraphic_O, we have:

Pr[M(D)S]eϵPr[M(D)S]+δ.Pr𝑀𝐷𝑆superscript𝑒italic-ϵPr𝑀superscript𝐷𝑆𝛿\displaystyle\Pr[M(D)\in S]\leq e^{\epsilon}\Pr[M(D^{\prime})\in S]+\delta\enspace.roman_Pr [ italic_M ( italic_D ) ∈ italic_S ] ≤ italic_e start_POSTSUPERSCRIPT italic_ϵ end_POSTSUPERSCRIPT roman_Pr [ italic_M ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ∈ italic_S ] + italic_δ .

When δ=0𝛿0\delta=0italic_δ = 0, we write ϵitalic-ϵ\epsilonitalic_ϵ-DP and say the mechanism satisfies pure DP; otherwise we say that it satisfies approximate DP. If the output space 𝒪𝒪\mathcal{O}caligraphic_O is discrete, then a mechanism is ϵitalic-ϵ\epsilonitalic_ϵ-DP if and only if Pr[M(D)=o]eϵPr[M(D)=o]Pr𝑀𝐷𝑜superscript𝑒italic-ϵPr𝑀superscript𝐷𝑜\Pr[M(D)=o]\leq e^{\epsilon}\Pr[M(D^{\prime})=o]roman_Pr [ italic_M ( italic_D ) = italic_o ] ≤ italic_e start_POSTSUPERSCRIPT italic_ϵ end_POSTSUPERSCRIPT roman_Pr [ italic_M ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_o ] for all o𝒪𝑜𝒪o\in\mathcal{O}italic_o ∈ caligraphic_O and DDsimilar-to-or-equals𝐷superscript𝐷D\simeq D^{\prime}italic_D ≃ italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT.

A key feature of DP is its resilience to post-processing: any function of the output of a DP mechanism still satisfies DP with the same (or better) parameters. A common way to establish that a mechanism satisfies differential privacy is through a high-probability bound on the privacy loss random variable.

Definition 2 (Privacy Loss (Dinur and Nissim,, 2003)).

Let M:𝒳𝒪:𝑀𝒳𝒪M:\mathcal{X}\to\cal{O}italic_M : caligraphic_X → caligraphic_O be a randomized mechanism and consider neighboring datasets DDsimilar-to-or-equals𝐷superscript𝐷D\simeq D^{\prime}italic_D ≃ italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. The privacy loss of the pair D𝐷Ditalic_D and Dsuperscript𝐷D^{\prime}italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT under M𝑀Mitalic_M for a given output o𝒪𝑜𝒪o\in\cal{O}italic_o ∈ caligraphic_O is defined as

M,D,D(o)subscript𝑀𝐷superscript𝐷𝑜\displaystyle\mathcal{L}_{M,D,D^{\prime}}(o)caligraphic_L start_POSTSUBSCRIPT italic_M , italic_D , italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_o ) =logPr[M(D)=o]Pr[M(D)=o].absentPr𝑀𝐷𝑜Pr𝑀superscript𝐷𝑜\displaystyle=\log\frac{\Pr[M(D)=o]}{\Pr[M(D^{\prime})=o]}\enspace.= roman_log divide start_ARG roman_Pr [ italic_M ( italic_D ) = italic_o ] end_ARG start_ARG roman_Pr [ italic_M ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_o ] end_ARG .
Definition 3 (pDP(Kasiviswanathan and Smith,, 2014)).

A mechanism M:𝒳𝒪:𝑀𝒳𝒪M:\mathcal{X}\to\cal{O}italic_M : caligraphic_X → caligraphic_O satisfies (ϵ,δ)italic-ϵ𝛿(\epsilon,\delta)( italic_ϵ , italic_δ )-pDP if for any DD𝒳similar-to-or-equals𝐷superscript𝐷𝒳D\simeq D^{\prime}\in\cal{X}italic_D ≃ italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ caligraphic_X,

ProM(D)[M,D,D(o)>ϵ]δ.subscriptPrsimilar-to𝑜𝑀𝐷subscript𝑀𝐷superscript𝐷𝑜italic-ϵ𝛿\displaystyle\Pr_{o\sim M(D)}\left[\mathcal{L}_{M,D,D^{\prime}}(o)>\epsilon% \right]\leq\delta\enspace.roman_Pr start_POSTSUBSCRIPT italic_o ∼ italic_M ( italic_D ) end_POSTSUBSCRIPT [ caligraphic_L start_POSTSUBSCRIPT italic_M , italic_D , italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_o ) > italic_ϵ ] ≤ italic_δ .

If a mechanism is (ϵ,δ)italic-ϵ𝛿(\epsilon,\delta)( italic_ϵ , italic_δ )-pDP, then it is also (ϵ,δ)italic-ϵ𝛿(\epsilon,\delta)( italic_ϵ , italic_δ )-DP (Kasiviswanathan and Smith,, 2014). A simple way to obtain pDP guarantees is through bounds on the moment-generating function of the privacy loss random variable; this is one of the motivations for Rényi Differential Privacy (RDP), which relies on a bound of the Rényi divergence between two distributions.

Definition 4 (Rényi divergence (Rényi,, 1961)).

Let α>1𝛼1\alpha>1italic_α > 1. The Rényi divergence of order α𝛼\alphaitalic_α between two probability distributions P𝑃Pitalic_P and Q𝑄Qitalic_Q on 𝒳𝒳\mathcal{X}caligraphic_X is defined by:

𝔻α(P||Q)1α1log𝔼oQ[P(o)Q(o)]α.\mathbb{D}_{\alpha}(P||Q)\triangleq\frac{1}{\alpha-1}\log\mathbb{E}_{o\sim Q}% \left[\frac{P(o)}{Q(o)}\right]^{\alpha}.blackboard_D start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( italic_P | | italic_Q ) ≜ divide start_ARG 1 end_ARG start_ARG italic_α - 1 end_ARG roman_log blackboard_E start_POSTSUBSCRIPT italic_o ∼ italic_Q end_POSTSUBSCRIPT [ divide start_ARG italic_P ( italic_o ) end_ARG start_ARG italic_Q ( italic_o ) end_ARG ] start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT .
Definition 5 (Rényi DP (Mironov,, 2017)).

Let α>1𝛼1\alpha>1italic_α > 1 and ϵ0italic-ϵ0\epsilon\geq 0italic_ϵ ≥ 0. A randomized mechanism M𝑀Mitalic_M is (α,ϵ)𝛼italic-ϵ(\alpha,\epsilon)( italic_α , italic_ϵ )-RDP for all DDsimilar-to-or-equals𝐷superscript𝐷D\simeq D^{\prime}italic_D ≃ italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT if, 𝔻α(M(D)M(D))ϵsubscript𝔻𝛼conditional𝑀𝐷𝑀superscript𝐷italic-ϵ\mathbb{D}_{\alpha}(M(D)\|M(D^{\prime}))\leq\epsilonblackboard_D start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( italic_M ( italic_D ) ∥ italic_M ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) ≤ italic_ϵ.

It is possible to convert RDP guarantees into probabilistic and approximate DP guarantees (Mironov,, 2017; Balle et al.,, 2020). In particular, any (α,ϵ)𝛼italic-ϵ(\alpha,\epsilon)( italic_α , italic_ϵ )-RDP mechanism satisfies (ϵp,δ)subscriptitalic-ϵ𝑝𝛿(\epsilon_{p},\delta)( italic_ϵ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_δ )-pDP guarantees with ϵp=ϵ+log(1/δ)/(α1)subscriptitalic-ϵ𝑝italic-ϵ1𝛿𝛼1\epsilon_{p}=\epsilon+\log(1/\delta)/(\alpha-1)italic_ϵ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = italic_ϵ + roman_log ( 1 / italic_δ ) / ( italic_α - 1 ) by Markov’s inequality. RDP greatly simplifies the analysis of mechanisms based on Gaussian noise because the Rényi divergence between Gaussian distributions has a simple expression, as well as a simple analysis under composition.

Gaussian Mechanism.

Adding Gaussian noise to the result of a low-sensitivity query is a staple of differentially private mechanism design. Let q:𝒳d:𝑞𝒳superscript𝑑q:\mathcal{X}\to\mathbb{R}^{d}italic_q : caligraphic_X → blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT be a query with global sensitivity Δq=supDDq(D)q(D)2subscriptΔ𝑞subscriptsupremumsimilar-to-or-equals𝐷superscript𝐷subscriptnorm𝑞𝐷𝑞superscript𝐷2\Delta_{q}=\sup_{D\simeq D^{\prime}}\|q(D)-q(D^{\prime})\|_{2}roman_Δ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT = roman_sup start_POSTSUBSCRIPT italic_D ≃ italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ∥ italic_q ( italic_D ) - italic_q ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and Z𝒩(0,σ2I)similar-to𝑍𝒩0superscript𝜎2𝐼Z\sim\mathcal{N}(0,\sigma^{2}I)italic_Z ∼ caligraphic_N ( 0 , italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_I ). The Gaussian Mechanism defined as M(D)=q(D)+Z𝑀𝐷𝑞𝐷𝑍M(D)=q(D)+Zitalic_M ( italic_D ) = italic_q ( italic_D ) + italic_Z satisfies (α,ϵ)𝛼italic-ϵ(\alpha,\epsilon)( italic_α , italic_ϵ )-RDP with ϵ=αΔq22σ2italic-ϵ𝛼superscriptsubscriptΔ𝑞22superscript𝜎2\epsilon=\frac{\alpha\Delta_{q}^{2}}{2\sigma^{2}}italic_ϵ = divide start_ARG italic_α roman_Δ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG for every α>1𝛼1\alpha>1italic_α > 1 (Mironov,, 2017). It is possible to convert this RDP guarantee into an approximate DP guarantee, although tighter approximate DP bounds can be obtained directly (Balle and Wang,, 2018, Theorem 8).

Gaussian Report Noisy Max.

In some applications it is useful to privately select which among a collection of queries q1,qd:𝒳:subscript𝑞1subscript𝑞𝑑𝒳q_{1},\ldots q_{d}:\mathcal{X}\to\mathbb{R}italic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT : caligraphic_X → blackboard_R (approximately) attains the largest value on a given dataset. This leads to the report noisy max mechanism – when instantiated using Gaussian noise, the mechanism is given by, M(D)=argmaxi[d]qi(D)+Zi𝑀𝐷subscriptargmax𝑖delimited-[]𝑑subscript𝑞𝑖𝐷subscript𝑍𝑖M(D)=\operatorname*{arg\,max}_{i\in[d]}q_{i}(D)+Z_{i}italic_M ( italic_D ) = start_OPERATOR roman_arg roman_max end_OPERATOR start_POSTSUBSCRIPT italic_i ∈ [ italic_d ] end_POSTSUBSCRIPT italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_D ) + italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, where Z1,,Zd𝒩(0,σ2)similar-tosubscript𝑍1subscript𝑍𝑑𝒩0superscript𝜎2Z_{1},\ldots,Z_{d}\sim\mathcal{N}(0,\sigma^{2})italic_Z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_Z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ∼ caligraphic_N ( 0 , italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ). Since the argmaxargmax\operatorname*{arg\,max}roman_arg roman_max operation is merely a post-processing of the Gaussian mechanism applied to the d𝑑ditalic_d-dimensional query q=(q1,,qd):𝒳d:𝑞subscript𝑞1subscript𝑞𝑑𝒳superscript𝑑q=(q_{1},\ldots,q_{d}):\mathcal{X}\to\mathbb{R}^{d}italic_q = ( italic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) : caligraphic_X → blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT with sensitivity ΔqsubscriptΔ𝑞\Delta_{q}roman_Δ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT, the Gaussian Report Noisy Max mechanism inherits the same privacy guarantees as the Gaussian mechanism above (e.g. the bounds provided by Balle and Wang, (2018, Theorem 8) or the RDP to DP conversion). Note that if each of the individual queries has sensitivity bounded by ΔΔ\Deltaroman_Δ, then we have ΔqdΔsubscriptΔ𝑞𝑑Δ\Delta_{q}\leq\sqrt{d}\Deltaroman_Δ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ≤ square-root start_ARG italic_d end_ARG roman_Δ.

Gaussian Above Threshold.

The Above Threshold mechanism receives a sequence of low-sensitivity queries and privately identifies the first query (approximately) exceeding a given threshold. The mechanism was introduced by Dwork et al., (2009) and forms the basis of the Sparse Vector Technique, a composition of Above Threshold algorithms to find a sparse set of relevant queries among a large set. The standard version of the Above Threshold algorithm uses Laplace noise, and its privacy analysis is notoriously subtle (Lyu et al.,, 2016). Zhu and Wang, (2020) recently proposed an RDP analysis which can be applied to the Gaussian version of Above Threshold (see Algorithm 3).

input : dataset D𝐷Ditalic_D; noise parameters σX,σZsubscript𝜎𝑋subscript𝜎𝑍\sigma_{X},\sigma_{Z}italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT; a stream of queries q1,q2,subscript𝑞1subscript𝑞2q_{1},q_{2},\ldotsitalic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_q start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , …; threshold ρ𝜌\rhoitalic_ρ.
ρ^=ρ+𝒩(0,σX2)^𝜌𝜌𝒩0superscriptsubscript𝜎𝑋2\hat{\rho}=\rho+\mathcal{N}(0,\sigma_{X}^{2})over^ start_ARG italic_ρ end_ARG = italic_ρ + caligraphic_N ( 0 , italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) for t=1,2,𝑡12normal-…t=1,2,\ldotsitalic_t = 1 , 2 , … do
       qt^=qt(D)+𝒩(0,σZ2)^subscript𝑞𝑡subscript𝑞𝑡𝐷𝒩0superscriptsubscript𝜎𝑍2\hat{q_{t}}=q_{t}(D)+\mathcal{N}(0,\sigma_{Z}^{2})over^ start_ARG italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_ARG = italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_D ) + caligraphic_N ( 0 , italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) if qt^ρ^normal-^subscript𝑞𝑡normal-^𝜌\hat{q_{t}}\geq\hat{\rho}over^ start_ARG italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_ARG ≥ over^ start_ARG italic_ρ end_ARG then
             Output xt=subscript𝑥𝑡topx_{t}=\topitalic_x start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ⊤ and HALT
       else
             Output xt=subscript𝑥𝑡bottomx_{t}=\botitalic_x start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ⊥
       end if
      
end for
Algorithm 1 Gaussian Above Threshold (Zhu and Wang,, 2020)
Theorem 6 (General RDP Bound on Gaussian Above Threshold (Zhu and Wang,, 2020)).

Suppose all queries given to the mechanism M𝑀Mitalic_M in Algorithm 3 have sensitivity bounded by Δnormal-Δ\Deltaroman_Δ. Then for γ>1𝛾1\gamma>1italic_γ > 1, >α>1𝛼1\infty>\alpha>1∞ > italic_α > 1,

𝔻α(M(D)M(D))subscript𝔻𝛼conditional𝑀𝐷𝑀superscript𝐷\displaystyle\mathbb{D}_{\alpha}\left(M(D)\|M(D^{\prime})\right)blackboard_D start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( italic_M ( italic_D ) ∥ italic_M ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) (γγ1)(αΔ22σX2)absent𝛾𝛾1𝛼superscriptΔ22superscriptsubscript𝜎𝑋2\displaystyle\leq\left(\frac{\gamma}{\gamma-1}\right)\left(\frac{\alpha\Delta^% {2}}{2\sigma_{X}^{2}}\right)≤ ( divide start_ARG italic_γ end_ARG start_ARG italic_γ - 1 end_ARG ) ( divide start_ARG italic_α roman_Δ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG )
+2αΔ2σZ2+log𝔼x𝒩(0,σX2)[𝔼[Tx]γ]γ(α1),2𝛼superscriptΔ2superscriptsubscript𝜎𝑍2subscript𝔼similar-to𝑥𝒩0superscriptsubscript𝜎𝑋2delimited-[]𝔼superscriptdelimited-[]conditional𝑇𝑥𝛾𝛾𝛼1\displaystyle+\frac{2\alpha\Delta^{2}}{\sigma_{Z}^{2}}+\frac{\log\mathbb{E}_{x% \sim\mathcal{N}(0,\sigma_{X}^{2})}\left[\mathbb{E}[T\mid x]^{\gamma}\right]}{% \gamma(\alpha-1)},+ divide start_ARG 2 italic_α roman_Δ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG roman_log blackboard_E start_POSTSUBSCRIPT italic_x ∼ caligraphic_N ( 0 , italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT [ blackboard_E [ italic_T ∣ italic_x ] start_POSTSUPERSCRIPT italic_γ end_POSTSUPERSCRIPT ] end_ARG start_ARG italic_γ ( italic_α - 1 ) end_ARG ,

where T𝑇Titalic_T is a random variable indicating the stopping time of M(D)𝑀𝐷M(D)italic_M ( italic_D ).

Unlike in the Laplace-based Above Threshold, the privacy bound for the Gaussian case depends on how long it takes the mechanism to stop (the third term in the expression above). When the queries are known a priori to be non-negative, it is possible to obtain bounds on the running time to provide the RDP guarantee below.

Theorem 7 (Gaussian Above Threshold RDP (Zhu and Wang,, 2020)).

Gaussian Above Threshold, with σZ3σXsubscript𝜎𝑍3subscript𝜎𝑋\sigma_{Z}\geq\sqrt{3}\sigma_{X}italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT ≥ square-root start_ARG 3 end_ARG italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT, threshold ρ0𝜌0\rho\geq 0italic_ρ ≥ 0, and Δnormal-Δ\Deltaroman_Δ-sensitive, non-negative queries, satisfies (α,ϵ)𝛼italic-ϵ(\alpha,\epsilon)( italic_α , italic_ϵ )-RDP with

ϵ=α2σX2+2α2σZ2+log(1+23π(1+9ρ2σX2)eρ2σX2)2(α1).italic-ϵ𝛼superscript2superscriptsubscript𝜎𝑋22𝛼superscript2superscriptsubscript𝜎𝑍2123𝜋19superscript𝜌2superscriptsubscript𝜎𝑋2superscript𝑒superscript𝜌2superscriptsubscript𝜎𝑋22𝛼1\displaystyle\epsilon=\frac{\alpha\triangle^{2}}{\sigma_{X}^{2}}+\frac{2\alpha% \triangle^{2}}{\sigma_{Z}^{2}}+\frac{\log\left(1+2\sqrt{3}\pi\left(1+\frac{9% \rho^{2}}{\sigma_{X}^{2}}\right)e^{\frac{\rho^{2}}{\sigma_{X}^{2}}}\right)}{2(% \alpha-1)}\enspace.italic_ϵ = divide start_ARG italic_α △ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 2 italic_α △ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG roman_log ( 1 + 2 square-root start_ARG 3 end_ARG italic_π ( 1 + divide start_ARG 9 italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) italic_e start_POSTSUPERSCRIPT divide start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_POSTSUPERSCRIPT ) end_ARG start_ARG 2 ( italic_α - 1 ) end_ARG .

Alternative methods to bound the running time often include the analyst supplying a bound k𝑘kitalic_k on the running time to the algorithm, forcing it to stop after a certain number of steps even if the threshold has not been exceeded. Zhu and Wang, (2020) also propose a number of composition results for the Sparse Vector Technique. One version allows the analyst to continue releasing queries without having to re-sample the threshold noise σXsubscript𝜎𝑋\sigma_{X}italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT, but in each case the analyst must know ahead of time the number of times they wish to release a “top\top”, and have an upper bound on the maximum number of queries they intend to run.

3 PURE PRIVATE GAUSSIAN MECHANISMS

To introduce our main contribution, we begin with a warm-up. We propose a pure DP bound for Gaussian Report Noisy Max. The proof techniques are the same for Above Threshold, but the analysis is simpler since all the queries are symmetric.

3.1 Warm-Up: Gaussian Report Noisy Max

The following is a pure DP bound for Gaussian Report Noisy Max for queries with bounded range.

Theorem 8 (Pure DP for Gaussian Report Noisy Max).

Let M𝑀Mitalic_M be the Gaussian Report Noisy Max mechanism with standard deviation σ𝜎\sigmaitalic_σ applied to d>1𝑑1d>1italic_d > 1 bounded queries q1,,qd:𝒳[a,b]normal-:subscript𝑞1normal-…subscript𝑞𝑑normal-→𝒳𝑎𝑏q_{1},\ldots,q_{d}:\mathcal{X}\to[a,b]italic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT : caligraphic_X → [ italic_a , italic_b ], each with sensitivity bounded by Δnormal-Δ\Deltaroman_Δ. Let c=ba𝑐𝑏𝑎c=b-aitalic_c = italic_b - italic_a. Let Φ()normal-Φnormal-⋅\Phi(\cdot)roman_Φ ( ⋅ ) be the standard Gaussian CDF. Then M𝑀Mitalic_M satisfies ϵitalic-ϵ\epsilonitalic_ϵ-DP with

ϵitalic-ϵ\displaystyle\epsilonitalic_ϵ =𝔼z𝒩(0,1)[Φ(zc2Δσ)d1]𝔼z𝒩(0,1)[Φ(zcσ)d1].absentsubscript𝔼similar-to𝑧𝒩01delimited-[]Φsuperscript𝑧𝑐2Δ𝜎𝑑1subscript𝔼similar-to𝑧𝒩01delimited-[]Φsuperscript𝑧𝑐𝜎𝑑1\displaystyle=\frac{\mathbb{E}_{z\sim\mathcal{N}(0,1)}\left[\Phi\left(z-\frac{% c-2\Delta}{\sigma}\right)^{d-1}\right]}{\mathbb{E}_{z\sim\mathcal{N}(0,1)}% \left[\Phi\left(z-\frac{c}{\sigma}\right)^{d-1}\right]}\enspace.= divide start_ARG blackboard_E start_POSTSUBSCRIPT italic_z ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ roman_Φ ( italic_z - divide start_ARG italic_c - 2 roman_Δ end_ARG start_ARG italic_σ end_ARG ) start_POSTSUPERSCRIPT italic_d - 1 end_POSTSUPERSCRIPT ] end_ARG start_ARG blackboard_E start_POSTSUBSCRIPT italic_z ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ roman_Φ ( italic_z - divide start_ARG italic_c end_ARG start_ARG italic_σ end_ARG ) start_POSTSUPERSCRIPT italic_d - 1 end_POSTSUPERSCRIPT ] end_ARG .

Notably, with the standard analysis of Gaussian Report Noisy Max, the privacy guarantee only depends on the ratio Δ/σΔ𝜎\Delta/\sigmaroman_Δ / italic_σ. However in our case, the bound on privacy additionally depends on the range of the queries through c/σ𝑐𝜎c/\sigmaitalic_c / italic_σ. In fact, it is easy to see that if c𝑐c\to\inftyitalic_c → ∞ then Gaussian Report Noisy Max cannot admit a pure DP bound.

The proof, deferred to the supplemental, relies on identifying the worst-case values that uniformly bounded queries can attain on a pair of neighboring datasets. In particular, we show that the worst case is obtained on a pair of neighboring datasets D𝐷Ditalic_D and Dsuperscript𝐷D^{\prime}italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT such that q1(D)==qd1(D)=bΔsubscript𝑞1𝐷subscript𝑞𝑑1𝐷𝑏Δq_{1}(D)=\cdots=q_{d-1}(D)=b-\Deltaitalic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_D ) = ⋯ = italic_q start_POSTSUBSCRIPT italic_d - 1 end_POSTSUBSCRIPT ( italic_D ) = italic_b - roman_Δ, qd(D)=a+Δsubscript𝑞𝑑𝐷𝑎Δq_{d}(D)=a+\Deltaitalic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_D ) = italic_a + roman_Δ, q1(D)==qd1(D)=bsubscript𝑞1superscript𝐷subscript𝑞𝑑1superscript𝐷𝑏q_{1}(D^{\prime})=\cdots=q_{d-1}(D^{\prime})=bitalic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = ⋯ = italic_q start_POSTSUBSCRIPT italic_d - 1 end_POSTSUBSCRIPT ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_b, and qd(D)=asubscript𝑞𝑑superscript𝐷𝑎q_{d}(D^{\prime})=aitalic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_a.

Note that the classical approach sketched in the previous section applied to our setting would consider the privacy of a Gaussian mechanism with a d𝑑ditalic_d-dimensional query of sensitivity Δq=ΔdsubscriptΔ𝑞Δ𝑑\Delta_{q}=\Delta\sqrt{d}roman_Δ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT = roman_Δ square-root start_ARG italic_d end_ARG, and treat the argmaxargmax\operatorname*{arg\,max}roman_arg roman_max operation as a post-processing step. While our approach gives a pure DP guarantee, the classical approach does not because Gaussian noise by itself cannot provide that guarantee. However, the classical approach gives a bound that is easy to compute.

The RDP approach gives a simple closed form expression, while the direct approximate DP approach gives a bound that has a simple dependence on the CDF of a standard Gaussian (Balle and Wang,, 2018). In contrast, the bound provided by our result requires estimating Gaussian expectations of a complex function; unfortunately, this does not admit a simple closed form expression. In  Section 3.4 we evaluate numerical methods for computing this quantity and compare the resulting values of ϵitalic-ϵ\epsilonitalic_ϵ with those provided by the classical approach.

Refer to caption
Figure 1: Privacy accounting for Δ=1e3,δ=1e5formulae-sequenceΔ1e3𝛿1e5\Delta=1\mathrm{e}{-3},\delta=1\mathrm{e}{-5}roman_Δ = 1 roman_e - 3 , italic_δ = 1 roman_e - 5. The heatmap shows where the ex-post Above Threshold Analysis offers an improvement over the Gaussian Above Threshold. As a comparison, we simulate expected stopping times for a range of multipliers, for [a,b]=[0,1]𝑎𝑏01[a,b]=[0,1][ italic_a , italic_b ] = [ 0 , 1 ]. The blue dotted line corresponds to the median stopping time when simulating 10k trials with a worst-case dataset. The red line corresponds to the 80th percentile. The plot shows a range of hyper-parameters as well as where the worst-case dataset is likely to halt. Our bounds provide improvements over the baseline below the blue line when squares are blue.

3.2 Ex-Post Gaussian Above Threshold

In the preceding section, we introduced a method to judge the privacy of Above Threshold before execution (Theorem 7) – these are often referred to as ex-ante privacy guarantees. Alternatively, we can measure the privacy loss after execution, leading to so-called ex-post privacy guarantees.

Definition 9 (Ex-Post DP (Ligett et al.,, 2017)).

Consider a function ϵp:𝒪+{}:subscriptitalic-ϵp𝒪subscript\epsilon_{\text{p}}:\cal{O}\to\mathbb{R}_{+}\cup\{\infty\}italic_ϵ start_POSTSUBSCRIPT p end_POSTSUBSCRIPT : caligraphic_O → blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ∪ { ∞ }. A randomized mechanism M:𝒳𝒪:𝑀𝒳𝒪M:\mathcal{X}\to\cal{O}italic_M : caligraphic_X → caligraphic_O satisfies ϵpsubscriptitalic-ϵp\epsilon_{\text{p}}italic_ϵ start_POSTSUBSCRIPT p end_POSTSUBSCRIPT-ex-post-DP if for any possible output o𝒪𝑜𝒪o\in\cal{O}italic_o ∈ caligraphic_O and any pair of neighboring datasets we have M,D,D(o)ϵp(o)subscript𝑀𝐷superscript𝐷𝑜subscriptitalic-ϵp𝑜\mathcal{L}_{M,D,D^{\prime}}(o)\leq\epsilon_{\text{p}}(o)caligraphic_L start_POSTSUBSCRIPT italic_M , italic_D , italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_o ) ≤ italic_ϵ start_POSTSUBSCRIPT p end_POSTSUBSCRIPT ( italic_o ).

Since Above Threshold outputs the (approximate) halting time, we can exploit the difference between when the ex-post and ex-ante privacy guarantee. In Fig. 1, we observe when the ex-post analysis is most beneficial, and when it is most likely to occur. As the public threshold increases, so does the separation between the ex-ante analysis and the ex-post analysis. With Above Threshold, we also need to consider how the mechanism might perform against a worst-case dataset maximizing the stopping time. Since queries are non-negative and bounded, this occurs when q1(D)==qt(D)=0subscript𝑞1𝐷subscript𝑞𝑡𝐷0q_{1}(D)=\cdots=q_{t}(D)=0italic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_D ) = ⋯ = italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_D ) = 0. We then compute the median stopping time (dashed blue line) and the 80th percentile (solid red line) for the worst case dataset. For bounded range between zero and one, we see the greatest effect when the mechanism halts early and ρ𝜌\rhoitalic_ρ is calibrated to be closer to one.

When the queries have bounded range, Gaussian Above Threshold (Algorithm 3) admits the following ex-post privacy bound.

Theorem 10 (Pure Ex-post Gaussian Above Threshold).

Let

ψξ(x)subscript𝜓𝜉𝑥\displaystyle\psi_{\xi}(x)italic_ψ start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT ( italic_x ) =Φ((x+ρ(b+a)+ξ)/σZ),and,absentΦ𝑥𝜌𝑏𝑎𝜉subscript𝜎𝑍and,\displaystyle=\Phi\left(\left(x+\rho-(b+a)+\xi\right)/\sigma_{Z}\right)% \enspace,\text{and, }= roman_Φ ( ( italic_x + italic_ρ - ( italic_b + italic_a ) + italic_ξ ) / italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT ) , and,
βξ(x)subscript𝛽𝜉𝑥\displaystyle\beta_{\xi}(x)italic_β start_POSTSUBSCRIPT italic_ξ end_POSTSUBSCRIPT ( italic_x ) =Φ((xρ+a+ξ)/σZ).absentΦ𝑥𝜌𝑎𝜉subscript𝜎𝑍\displaystyle=\Phi\left(\left(x-\rho+a+\xi\right)/\sigma_{Z}\right)\enspace.= roman_Φ ( ( italic_x - italic_ρ + italic_a + italic_ξ ) / italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT ) .

Given a stream q1,q2,:𝒳[a,b]normal-:subscript𝑞1subscript𝑞2normal-…normal-→𝒳𝑎𝑏q_{1},q_{2},\ldots:\mathcal{X}\to[a,b]italic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_q start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … : caligraphic_X → [ italic_a , italic_b ] with global sensitivity Δnormal-Δ\Deltaroman_Δ, the Gaussian Above Threshold mechanism (Algorithm 3), halting at time step t𝑡titalic_t with o={t1}o=\{\bot^{t-1}\top\}italic_o = { ⊥ start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT ⊤ }, satisfies ϵ𝑝subscriptitalic-ϵ𝑝\epsilon_{\text{p}}italic_ϵ start_POSTSUBSCRIPT p end_POSTSUBSCRIPT-ex-post-DP with

ϵ𝑝(o)subscriptitalic-ϵ𝑝𝑜\displaystyle\epsilon_{\text{p}}(o)italic_ϵ start_POSTSUBSCRIPT p end_POSTSUBSCRIPT ( italic_o ) =𝔼x𝒩(0,1)[ψΔ(σXx)(t1)βΔ(σXx)]𝔼x𝒩(0,1)[ψ0(σXx)(t1)β0(σXx)].absentsubscript𝔼similar-to𝑥𝒩01delimited-[]subscript𝜓Δsuperscriptsubscript𝜎𝑋𝑥𝑡1subscript𝛽Δsubscript𝜎𝑋𝑥subscript𝔼similar-to𝑥𝒩01delimited-[]subscript𝜓0superscriptsubscript𝜎𝑋𝑥𝑡1subscript𝛽0subscript𝜎𝑋𝑥\displaystyle=\frac{\mathbb{E}_{x\sim\mathcal{N}(0,1)}\left[\psi_{\Delta}(% \sigma_{X}x)^{(t-1)}\cdot\beta_{\Delta}(\sigma_{X}x)\right]}{\mathbb{E}_{x\sim% \mathcal{N}(0,1)}\left[\psi_{0}(\sigma_{X}x)^{(t-1)}\cdot\beta_{0}(\sigma_{X}x% )\right]}\enspace.= divide start_ARG blackboard_E start_POSTSUBSCRIPT italic_x ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ italic_ψ start_POSTSUBSCRIPT roman_Δ end_POSTSUBSCRIPT ( italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x ) start_POSTSUPERSCRIPT ( italic_t - 1 ) end_POSTSUPERSCRIPT ⋅ italic_β start_POSTSUBSCRIPT roman_Δ end_POSTSUBSCRIPT ( italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x ) ] end_ARG start_ARG blackboard_E start_POSTSUBSCRIPT italic_x ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x ) start_POSTSUPERSCRIPT ( italic_t - 1 ) end_POSTSUPERSCRIPT ⋅ italic_β start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x ) ] end_ARG .

Note that this formulation is very similar to the ratio of expectations in our pure DP analysis of Report Noisy Max (Theorem 12). The proof, deferred to the supplemental, follows from Pure DP Gaussian Report Noisy Max, where we find that the point where the ratio is maximized is the same in all but the final time step. In the last step, the query bound is negated. Hence, the ratio is largest when qt=asubscript𝑞𝑡𝑎q_{t}=aitalic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_a. A final remark is that the mechanism’s greatest privacy loss occurs when each prior step would have been more optimal than the step at which it halts.

3.3 Fully-Adaptive Composition with Ex-Post Privacy Guarantees

Above Threshold stops the first time the threshold is exceeded. The Sparse Vector Technique (SVT) applies a sequence of Above Threshold mechanisms to find a set of queries that (approximately) exceed the pre-defined threshold. In the case of Laplace noise, the privacy analysis of SVT can be performed either directly (if the noise applied to the threshold is not refreshed after each Above Threshold terminates) or via composition (Dwork and Roth,, 2014; Lyu et al.,, 2016). Something similar holds for SVT with Gaussian noise, although in this case the analysis without noise resampling only applies to a range of parameters (Zhu and Wang,, 2020). Here we present a simple technique for fully adaptive composition of mechanisms that have both pDP and ex-post-DP guarantees, which can be combined with our analysis of Gaussian Above Threshold to yield a fully adaptive SVT with Gaussian noise algorithm without additional hyper-parameters like the maximum number of queries per Above Threshold or the maximum number of invocations of the Above Threshold mechanism.

Our method (Algorithm 4) sequentially composes a stream of adaptive mechanisms and applies a stopping time rule that limits over-spending a predefined privacy budget. The privacy expenditure of each mechanism is tracked based on their output, using the ex-post privacy guarantee. The stopping rule uses the probabilistic DP guarantee to halt when there is a high enough probability of exceeding the privacy budget.

Refer to caption
Figure 2: Ex-Post Above Threshold Privacy Loss (Δ=0.001,σX=0.15formulae-sequenceΔ0.001subscript𝜎𝑋0.15\Delta=0.001,\sigma_{X}=0.15roman_Δ = 0.001 , italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT = 0.15). The ex-post privacy loss also changes as a function of the public threshold ρ𝜌\rhoitalic_ρ. Note that if the mechanism halts after two timesteps, the minimum is observed when ρ=0.5𝜌0.5\rho=0.5italic_ρ = 0.5. As t𝑡titalic_t increases, the privacy loss decreases as ρ1𝜌1\rho\to 1italic_ρ → 1.
input : dataset D𝐷Ditalic_D; privacy budget ϵitalic-ϵ\epsilonitalic_ϵ; a stream of adaptive mechanisms M1,M2,subscript𝑀1subscript𝑀2M_{1},M_{2},\ldotsitalic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , …; a stream of values ϵmax,1,ϵmax,2,subscriptitalic-ϵ1subscriptitalic-ϵ2\epsilon_{\max,1},\epsilon_{\max,2},\ldotsitalic_ϵ start_POSTSUBSCRIPT roman_max , 1 end_POSTSUBSCRIPT , italic_ϵ start_POSTSUBSCRIPT roman_max , 2 end_POSTSUBSCRIPT , …; and stream of functions ϵp,1,ϵp,2,subscriptitalic-ϵp1subscriptitalic-ϵp2\epsilon_{\text{p},1},\epsilon_{\text{p},2},\ldotsitalic_ϵ start_POSTSUBSCRIPT p , 1 end_POSTSUBSCRIPT , italic_ϵ start_POSTSUBSCRIPT p , 2 end_POSTSUBSCRIPT , …
for t=1,2,𝑡12normal-…t=1,2,\ldotsitalic_t = 1 , 2 , … do
       if i=1t1ϵi+ϵmax,tϵsuperscriptsubscript𝑖1𝑡1subscriptitalic-ϵ𝑖subscriptitalic-ϵ𝑡italic-ϵ\sum_{i=1}^{t-1}\epsilon_{i}+\epsilon_{\max,t}\geq\epsilon∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT italic_ϵ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_ϵ start_POSTSUBSCRIPT roman_max , italic_t end_POSTSUBSCRIPT ≥ italic_ϵ then
             HALT
       else
             ot=Mt(D;o1:t1)subscript𝑜𝑡subscript𝑀𝑡𝐷subscript𝑜:1𝑡1o_{t}=M_{t}(D;o_{1:t-1})italic_o start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_M start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_D ; italic_o start_POSTSUBSCRIPT 1 : italic_t - 1 end_POSTSUBSCRIPT ) ϵt=ϵp,t(ot)subscriptitalic-ϵ𝑡subscriptitalic-ϵp𝑡subscript𝑜𝑡\epsilon_{t}=\epsilon_{\text{p},t}(o_{t})italic_ϵ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_ϵ start_POSTSUBSCRIPT p , italic_t end_POSTSUBSCRIPT ( italic_o start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) Release otsubscript𝑜𝑡o_{t}italic_o start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT
       end if
      
end for
Algorithm 2 Filtered Composition, Ex-Post Privacy
Theorem 11.

Suppose the mechanisms M1,M2,subscript𝑀1subscript𝑀2normal-…M_{1},M_{2},\ldotsitalic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … provided to Algorithm 4 are such that Mtsubscript𝑀𝑡M_{t}italic_M start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is (ϵmax,t,δ)subscriptitalic-ϵ𝑡𝛿(\epsilon_{\max,t},\delta)( italic_ϵ start_POSTSUBSCRIPT roman_max , italic_t end_POSTSUBSCRIPT , italic_δ )-pDP and ϵ𝑝,tsubscriptitalic-ϵ𝑝𝑡\epsilon_{\text{p},t}italic_ϵ start_POSTSUBSCRIPT p , italic_t end_POSTSUBSCRIPT-ex-post-DP for all t𝑡titalic_t. Then Algorithm 4 satisfies (ϵ,δ)italic-ϵ𝛿(\epsilon,\delta)( italic_ϵ , italic_δ )-DP.

In Fig. 2 we plot the ex-post privacy loss bound as a function of the public threshold parameter, ρ𝜌\rhoitalic_ρ. Given a stream of queries i=1,2,,𝑖12i=1,2,\ldots,italic_i = 1 , 2 , … , bounded by aqib𝑎subscript𝑞𝑖𝑏a\leq q_{i}\leq bitalic_a ≤ italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≤ italic_b, the mechanism will report less privacy loss as ρb𝜌𝑏\rho\to bitalic_ρ → italic_b.

3.4 Numerical Computation of Bounds

We evaluate two methods for producing numerical estimates of the bounds: Monte Carlo and numerical integration. Monte Carlo density estimation is a natural starting point for computing bounds for Theorem 12 and Theorem 17. However, Monte Carlo methods require a tremendous amount of samples to yield accurate results. Note that in both cases, the CDF is taken to an exponential power in the numerator and the denominator, causing numerical instabilities. To improve runtime performance and stability, we use a scientific library that can compute integrals with high precision. The Python mpmath (mpmath,, 2023) library is able to compute each density and the outer integral with arbitrary degree of precision.

Refer to caption
Figure 3: Gaussian Report Noisy Max for Δ=0.01Δ0.01\Delta=0.01roman_Δ = 0.01. Numerical integration (green) compared to Monte Carlo estimate (beige) with 10B samples. Shaded region is the standard deviation over 100 trials. Numerical integration methods are deterministic; error bars only apply to Monte Carlo estimates, which are known to converge to the true estimate with infinite samples.

As shown in Fig. 3, for low sensitivity queries ΔΔ\Deltaroman_Δ and σ=0.3𝜎0.3\sigma=0.3italic_σ = 0.3, the variance between trials becomes unwieldy, even when we rely on common open source libraries that can precisely estimate the CDF of a univariate Gaussian.

Refer to caption
Figure 4: Scatter plot indicating the accuracy for UCI Bikes with ρ=0.575𝜌0.575\rho=0.575italic_ρ = 0.575. and final privacy spend over a range of noise multipliers. Final privacy loss (ϵitalic-ϵ\epsilonitalic_ϵ) is reported for FSRC (green). Threshold noise, σXsubscript𝜎𝑋\sigma_{X}italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT in the range of [0.09,0.15]0.090.15[0.09,0.15][ 0.09 , 0.15 ]. A clear separation in privacy accounting occurs over a range of noise multipliers.

4 EMPIRICAL RESULTS

We benchmark our SVT-like method (FSRC and Gaussian Above Threshold) on mobility and energy datasets. Additional experiments with the Pure DP Gaussian Report Noisy Max bound are included in the appendix. Experiments were done on a Apple M1 processor (32 GB), except for the Monte Carlo numerical estimation, which was done on a NVIDIA V100 GPU with 32 GB VRAM.

The UCI Bikes Dataset captures the utilization of shared bikes in a geographic area over the course of a year (Fanaee-T and Gama,, 2013). Since we do not know the upper bound on registered customers, we take the maximum (6,946 users) and assume that this is a public value. Note that our analysis is still worst-case, in that a user is assumed to be contributing to each daily (normalized) count query. We set Above Threshold to HALT when bike sharing exceeds a threshold ρ[0,1]𝜌01\rho\in[0,1]italic_ρ ∈ [ 0 , 1 ]. In Fig. 17 we plot a range of calibrations, and in the supplemental we show the privacy spend over time. The LCL London Energy Dataset (Greater London Authority,, 2012), consists of energy usage for N=5,564𝑁5564N=5,564italic_N = 5 , 564 customers over d=829𝑑829d=829italic_d = 829 days. The larger number of queries increases the privacy cost; however this is balanced by a decrease in individual contribution to each query due to each query having Δ=1/NΔ1𝑁\Delta=1/Nroman_Δ = 1 / italic_N. In Fig. 5 we plot a range of calibrations. As the threshold decreases, we witness more queries released and therefore a greater privacy spend.

Refer to caption
Figure 5: Scatter plot indicating the accuracy and final privacy spend over a range of noise multipliers for ρ=0.33𝜌0.33\rho=0.33italic_ρ = 0.33 with the LCL London Energy dataset. Privacy loss (ϵitalic-ϵ\epsilonitalic_ϵ) is reported for FSRC (green). Threshold noise, σXsubscript𝜎𝑋\sigma_{X}italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT, was evaluated in the range of [0.04,0.16]0.040.16[0.04,0.16][ 0.04 , 0.16 ]. Our accounting method provides benefits when σX=0.04subscript𝜎𝑋0.04\sigma_{X}=0.04italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT = 0.04.

4.1 Online Selection with Filtered Self-Reporting Composition

Answering sequential questions in an interactive setting typically requires the up-front selection of privacy parameters. The most common method to answer a large number of queries is the Sparse Vector Technique. In this setting, Above Threshold serves as a privacy primitive in more complex algorithms (Hardt and Rothblum,, 2010). First, the curator decides how many times they expect to release a query in order to allocate the privacy budget. The budget is further split across two noise adding mechanisms. Noise is added to each query, as well as a public threshold parameter, which centers whether a point is flagged as a “top\top” (interesting) or a “bottom\bot” (not interesting). One solution—and our baseline for consideration—restricts a curator to fully-adaptive composition using a privacy filter (Rogers et al.,, 2023) and a novel result by Zhu and Wang, (2020) which places no restriction on the number of queries. We are primarily concerned with satisfying the following two requirements: (1) the analyst should be able to modify queries after Above Threshold halts, and (2) they should be able to guarantee that an up-front privacy budget is respected. Therefore, we combine FSRC with the privacy analysis in Theorem 17. To calibrate ϵmaxsubscriptitalic-ϵmax\epsilon_{\text{max}}italic_ϵ start_POSTSUBSCRIPT max end_POSTSUBSCRIPT, we take an RDP bound of Gaussian Above Threshold (Theorem 7) with δ=1/N𝛿1𝑁\delta=1/Nitalic_δ = 1 / italic_N.

Experiment Parameters.

In each case, the datasets have a temporal axis, meaning that when the mechanism halts, we restart at the t+1𝑡1t+1italic_t + 1’ timestep and continue accumulating privacy spend. To evaluate FSRC, we compare Algorithm 4 using Gaussian Above Threshold (Algorithm 3), to a Privacy Filter (Whitehouse et al.,, 2023) with sequential composition of the same mechanism. In FSRC, we apply Theorem 17 in our privacy accounting. For the baseline, we compute an RDP bound using Zhu and Wang, (2020). For each pair of noise multipliers and thresholds, we plot each result in a scatter plot, and the privacy spend over 50 runs. We use AutoDP (Wang,, 2023) with support for global sensitivity calibration to apply their bound with Δ<1Δ1\Delta<1roman_Δ < 1. As in Zhu and Wang, (2020), we fix σZ=3σXsubscript𝜎𝑍3subscript𝜎𝑋\sigma_{Z}=\sqrt{3}\sigma_{X}italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT = square-root start_ARG 3 end_ARG italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT. We ran all our experiments over 50 runs with a range of values for σXsubscript𝜎𝑋\sigma_{X}italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT. Importantly, the privacy spend using a DP filter cannot be disclosed without leaking privacy, and must therefore be replaced with a privacy odometer if the data curator wishes to share the spent budget (Rogers et al.,, 2016). Utility. We compute the F1 Score to measure utility for both algorithms. Since each algorithm outputs a binary vector, we can measure how many times the mechanism matches with a ground truth algorithm where no noise is added to the queries or the threshold.

5 RELATED WORK

Our work spans four areas of privacy research, (1) accounting methods for Gaussian mechanisms, (2) maximizing the number of interactive, user-level queries, (3) privacy filters and fully adaptive composition, and (4) ex-post privacy analysis.

The Gaussian Mechanism adds calibrated noise to the output of a query. In the learning setting, a number of privacy accounting techniques exist (Abadi et al.,, 2016). However such approaches do not map directly to query selection. In the online setting, ex-post DP accounting already exists for the Laplace Mechanism (Ligett et al.,, 2017); however, many successful deployments of DP rely on Gaussian mechanisms. This is likely due to the greater noise concentration around the mean and the thinner tails exhibited by Gaussian mechanisms (Dwork and Roth,, 2014).

The Sparse Vector Technique (SVT) (Dwork et al.,, 2009) is a foundational differentially private algorithm. By splitting the privacy budget between the cost of returning a binary vector and the query of interest, utility is increased.

A Gaussian version offers better utility over the Laplace mechanism and can, surprisingly, support a potentially infinite number of queries (Zhu and Wang,, 2020).

Hartmann et al., (2022) introduce Output DP as a means of analyzing SVT and the Propose-Test-Release with Laplace noise. Their work generalizes results from Ligett et al., (2017) and they show how basic composition bounds can (for few queries) offer better utility over advanced composition results.

Ex-Post Privacy. Ligett et al., (2017) defined ex-post privacy in terms of (ϵ,0)italic-ϵ0(\epsilon,0)( italic_ϵ , 0 )-DP. In common with this work, they studied SVT, but with a focus on the Laplace Mechanism. Redberg and Wang, (2021) consider ex-post privacy with Gaussian mechanisms for data-dependent privacy parameters with the Gaussian mechanism over real-valued queries.

Privacy Filters, first proposed by Rogers et al., (2016), are a key ingredient in allowing adaptive composition of privacy-preserving mechanisms as well as the privacy spend. Feldman and Zrnic, (2021), and Lécuyer, (2021) extended these results to Rényi DP, with the caveat that the higher order parameters needed to be pre-defined. Recently, Whitehouse et al., (2023) tightened these results and Rogers et al., (2023) then applied ex-post privacy to probabilistic DP mechanisms. We consider their efforts to be closest to ours; however, they do not consider query online selection.

6 CONCLUSION

We provided pure-DP bounds on Gaussian selection mechanisms with bounded queries. Additionally, we developed new composition tools for ex-ante and ex-post privacy analysis. We demonstrated increased query accuracy for an equivalent privacy budget in energy and mobility datasets in the online setting.

We consider ex-post privacy analysis a promising method tightening privacy accounting in online algorithms, and our composition result, FSRC, could be applied to other sequential algorithms.

Accounting for user-level privacy over long time horizons is necessary in a number of sequential and interactive decision-making tasks. In particular, we foresee direct benefit in applying these methods to model selection.

Acknowledgements

J.L. is supported by the Google DeepMind Graduate Fund and the Fonds de Recherche du Québec. We wish to thank Thomas Steinke for his comments on an early draft. We also thank Guillaume Rabusseau, Jose Gallego-Posada, Maxime Wabartha and Vincent Luczkow for many fruitful discussions. Finally, we thank Iosif Pinelis for bringing l’Hôpital’s Monotone Rule to our attention.

References

  • Abadi et al., (2016) Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L. (2016). Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pages 308–318.
  • Ács and Castelluccia, (2011) Ács, G. and Castelluccia, C. (2011). I have a dream!(differentially private smart metering). In International Workshop on Information Hiding, pages 118–132. Springer.
  • Aktay et al., (2020) Aktay, A., Bavadekar, S., Cossoul, G., Davis, J., Desfontaines, D., Fabrikant, A., Gabrilovich, E., Gadepalli, K., Gipson, B., Guevara, M., et al. (2020). Google covid-19 community mobility reports: anonymization process description (version 1.1). arXiv preprint arXiv:2004.04145.
  • Anderson et al., (1993) Anderson, G., Vamanamurthy, M., and Vuorinen, M. (1993). Inequalities for quasiconformal mappings in space. Pacific J. Math., 160(1):1–18.
  • Balle et al., (2020) Balle, B., Barthe, G., Gaboardi, M., Hsu, J., and Sato, T. (2020). Hypothesis testing interpretations and renyi differential privacy. In Chiappa, S. and Calandra, R., editors, The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine Learning Research, pages 2496–2506. PMLR.
  • Balle and Wang, (2018) Balle, B. and Wang, Y.-X. (2018). Improving the gaussian mechanism for differential privacy: Analytical calibration and optimal denoising. In International Conference on Machine Learning, pages 394–403. PMLR.
  • Bohli et al., (2010) Bohli, J.-M., Sorge, C., and Ugus, O. (2010). A privacy model for smart metering. In 2010 IEEE International Conference on Communications Workshops, pages 1–5.
  • Cummings et al., (2018) Cummings, R., Krehbiel, S., Lai, K. A., and Tantipongpipat, U. (2018). Differential privacy for growing databases. Advances in Neural Information Processing Systems, 31.
  • Desfontaines, (2023) Desfontaines, D. (2023). Publishing wikipedia usage data with strong privacy guarantees.
  • Dinur and Nissim, (2003) Dinur, I. and Nissim, K. (2003). Revealing information while preserving privacy. In Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’03, page 202–210. Association for Computing Machinery.
  • Dwork, (2006) Dwork, C. (2006). Differential privacy. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 4052 LNCS, pages 1–12. Springer Verlag.
  • Dwork et al., (2006) Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 3876 LNCS, pages 265–284.
  • Dwork et al., (2009) Dwork, C., Naor, M., Reingold, O., Rothblum, G. N., and Vadhan, S. (2009). On the complexity of differentially private data release. In Proceedings of the forty-first annual ACM symposium on Theory of computing, New York, NY, USA. ACM.
  • Dwork and Roth, (2014) Dwork, C. and Roth, A. (2014). The Algorithmic Foundations of Differential Privacy. Foundations and trends in theoretical computer science. Now.
  • Fanaee-T and Gama, (2013) Fanaee-T, H. and Gama, J. (2013). Event labeling combining ensemble detectors and background knowledge. Progress in Artificial Intelligence, pages 1–15.
  • Feldman and Zrnic, (2021) Feldman, V. and Zrnic, T. (2021). Individual privacy accounting via a renyi filter. Advances in Neural Information Processing Systems, 34:28080–28091.
  • Greater London Authority, (2012) Greater London Authority (2012). Smartmeter Energy Use Data in London Households.
  • Haji Mirzaee et al., (2022) Haji Mirzaee, P., Shojafar, M., Cruickshank, H., and Tafazolli, R. (2022). Smart grid security and privacy: From conventional to machine learning issues (threats and countermeasures). IEEE Access, 10:52922–52954.
  • Hardt and Rothblum, (2010) Hardt, M. and Rothblum, G. N. (2010). A multiplicative weights mechanism for privacy-preserving data analysis. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science. IEEE.
  • Hartmann et al., (2022) Hartmann, V., Bindschaedler, V., Bentkamp, A., and West, R. (2022). Privacy accounting ε𝜀\varepsilonitalic_ε conomics: Improving differential privacy composition via a posteriori bounds. arXiv preprint arXiv:2205.03470.
  • Hu et al., (2021) Hu, T., Wang, S., She, B., Zhang, M., Huang, X., Cui, Y., Khuri, J., Hu, Y., Fu, X., Wang, X., et al. (2021). Human mobility data in the covid-19 pandemic: characteristics, applications, and challenges. International Journal of Digital Earth, 14(9):1126–1147.
  • Kasiviswanathan and Smith, (2014) Kasiviswanathan, S. P. and Smith, A. (2014). On the ’semantics’ of differential privacy: A bayesian formulation. Journal of Privacy and Confidentiality, 6(1).
  • Lécuyer, (2021) Lécuyer, M. (2021). Practical privacy filters and odometers with r\\\backslash\’enyi differential privacy and applications to differentially private deep learning. arXiv preprint arXiv:2103.01379.
  • Ligett et al., (2017) Ligett, K., Neel, S., Roth, A., Waggoner, B., and Wu, S. Z. (2017). Accuracy first: Selecting a differential privacy level for accuracy constrained erm. Advances in Neural Information Processing Systems, 30.
  • Lyu et al., (2016) Lyu, M., Su, D., and Li, N. (2016). Understanding the sparse vector technique for differential privacy. arXiv preprint arXiv:1603.01699.
  • McKenna and Sheldon, (2020) McKenna, R. and Sheldon, D. R. (2020). Permute-and-flip: A new mechanism for differentially private selection. Advances in Neural Information Processing Systems, 33:193–203.
  • Mironov, (2017) Mironov, I. (2017). Rényi differential privacy. In 2017 IEEE 30th computer security foundations symposium (CSF), pages 263–275. IEEE.
  • mpmath, (2023) mpmath (2023). mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0). http://mpmath.org/.
  • Narayanan and Shmatikov, (2008) Narayanan, A. and Shmatikov, V. (2008). Robust de-anonymization of large sparse datasets. In 2008 IEEE Symposium on Security and Privacy (sp 2008), pages 111–125.
  • Papernot et al., (2018) Papernot, N., Song, S., Mironov, I., Raghunathan, A., Talwar, K., and Erlingsson, Ú. (2018). Scalable private learning with pate. arXiv preprint arXiv:1802.08908.
  • Pinelis, (2002) Pinelis, I. (2002). L’hospital type rules for monotonicity, with applications. J. Inequal. Pure Appl. Math, 3(1).
  • Ratnam et al., (2017) Ratnam, E. L., Weller, S. R., Kellett, C. M., and Murray, A. T. (2017). Residential load and rooftop pv generation: an australian distribution network dataset. International Journal of Sustainable Energy, 36(8):787–806.
  • Redberg and Wang, (2021) Redberg, R. and Wang, Y.-X. (2021). Privately publishable per-instance privacy. Advances in Neural Information Processing Systems, 34:17335–17346.
  • Rényi, (1961) Rényi, A. (1961). On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, volume 4, pages 547–562.
  • Rogers et al., (2023) Rogers, R., Samorodnitsky, G., Wu, Z. S., and Ramdas, A. (2023). Adaptive privacy composition for accuracy-first mechanisms. arXiv preprint arXiv:2306.13824.
  • Rogers et al., (2016) Rogers, R. M., Roth, A., Ullman, J., and Vadhan, S. (2016). Privacy odometers and filters: Pay-as-you-go composition. Advances in Neural Information Processing Systems, 29.
  • Wang et al., (2016) Wang, Q., Zhang, Y., Lu, X., Wang, Z., Qin, Z., and Ren, K. (2016). Real-time and spatio-temporal crowd-sourced social network data publishing with differential privacy. IEEE Trans. Dependable Secure Comput., pages 1–1.
  • Wang, (2023) Wang, Y.-X. (2023). autodp: autodp: A flexible and easy-to-use package for differential privacy.
  • Whitehouse et al., (2023) Whitehouse, J., Ramdas, A., Rogers, R., and Wu, S. (2023). Fully-adaptive composition in differential privacy. In International Conference on Machine Learning, pages 36990–37007. PMLR.
  • Xu et al., (2017) Xu, F., Tu, Z., Li, Y., Zhang, P., Fu, X., and Jin, D. (2017). Trajectory recovery from ash: User privacy is not preserved in aggregated mobility data. In Proceedings of the 26th international conference on world wide web, pages 1241–1250.
  • Zhang et al., (2021) Zhang, W., Krehbiel, S., Tuo, R., Mei, Y., and Cummings, R. (2021). Single and multiple Change-Point detection with differential privacy. J. Mach. Learn. Res., 22(29):1–36.
  • Zhu and Wang, (2020) Zhu, Y. and Wang, Y.-X. (2020). Improving sparse vector technique with renyi differential privacy. Advances in Neural Information Processing Systems, 33:20249–20258.

Appendix A PROOFS FROM SECTION 2

Our main contribution relies on a number of proof techniques which are extended from the simpler Gaussian Report Noisy Max setting.

A.1 Pure DP Gaussian Report Noisy Max

Theorem 12 (Pure DP for Gaussian Report Noisy Max).

Let M𝑀Mitalic_M be the Gaussian Report Noisy Max mechanism with standard deviation σ𝜎\sigmaitalic_σ applied to d>1𝑑1d>1italic_d > 1 bounded queries q1,,qd:𝒳[a,b]normal-:subscript𝑞1normal-…subscript𝑞𝑑normal-→𝒳𝑎𝑏q_{1},\ldots,q_{d}:\mathcal{X}\to[a,b]italic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT : caligraphic_X → [ italic_a , italic_b ], each with sensitivity bounded by Δnormal-Δ\Deltaroman_Δ. Let c=ba𝑐𝑏𝑎c=b-aitalic_c = italic_b - italic_a. Then M𝑀Mitalic_M satisfies ϵitalic-ϵ\epsilonitalic_ϵ-DP with

ϵitalic-ϵ\displaystyle\epsilonitalic_ϵ =𝔼z𝒩(0,1)[Φ(zc2Δσ)d1]𝔼z𝒩(0,1)[Φ(zcσ)d1].absentsubscript𝔼similar-to𝑧𝒩01delimited-[]Φsuperscript𝑧𝑐2Δ𝜎𝑑1subscript𝔼similar-to𝑧𝒩01delimited-[]Φsuperscript𝑧𝑐𝜎𝑑1\displaystyle=\frac{\mathbb{E}_{z\sim\mathcal{N}(0,1)}\left[\Phi\left(z-\frac{% c-2\Delta}{\sigma}\right)^{d-1}\right]}{\mathbb{E}_{z\sim\mathcal{N}(0,1)}% \left[\Phi\left(z-\frac{c}{\sigma}\right)^{d-1}\right]}\enspace.= divide start_ARG blackboard_E start_POSTSUBSCRIPT italic_z ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ roman_Φ ( italic_z - divide start_ARG italic_c - 2 roman_Δ end_ARG start_ARG italic_σ end_ARG ) start_POSTSUPERSCRIPT italic_d - 1 end_POSTSUPERSCRIPT ] end_ARG start_ARG blackboard_E start_POSTSUBSCRIPT italic_z ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ roman_Φ ( italic_z - divide start_ARG italic_c end_ARG start_ARG italic_σ end_ARG ) start_POSTSUPERSCRIPT italic_d - 1 end_POSTSUPERSCRIPT ] end_ARG . (1)

To prove our Pure DP Gaussian Report Noisy Max bound, we first analyze the effect of the sensitivity in the privacy loss of the Gaussian Report Noisy Max mechanism instantiated with uniformly bounded queries.

Lemma 13.

Let M𝑀Mitalic_M be the Gaussian Report Noisy Max mechanism with standard deviation σ𝜎\sigmaitalic_σ applied to d>1𝑑1d>1italic_d > 1 bounded queries q1,,qd:𝒳[a,b]normal-:subscript𝑞1normal-…subscript𝑞𝑑normal-→𝒳𝑎𝑏q_{1},\ldots,q_{d}:\mathcal{X}\to[a,b]italic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT : caligraphic_X → [ italic_a , italic_b ], each with sensitivity bounded by Δnormal-Δ\Deltaroman_Δ. Then we have

supDDsupo[d]Pr[M(D)=o]Pr[M(D)=o]subscriptsupremumsimilar-to-or-equals𝐷superscript𝐷subscriptsupremum𝑜delimited-[]𝑑Pr𝑀𝐷𝑜Pr𝑀superscript𝐷𝑜\displaystyle\sup_{D\simeq D^{\prime}}\sup_{o\in[d]}\frac{\Pr[M(D)=o]}{\Pr[M(D% ^{\prime})=o]}roman_sup start_POSTSUBSCRIPT italic_D ≃ italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT roman_sup start_POSTSUBSCRIPT italic_o ∈ [ italic_d ] end_POSTSUBSCRIPT divide start_ARG roman_Pr [ italic_M ( italic_D ) = italic_o ] end_ARG start_ARG roman_Pr [ italic_M ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_o ] end_ARG supy1,,yd1[ab+2Δ,ba]𝔼z𝒩(0,1)[i=1d1Φ(zyi2Δσ)]𝔼z𝒩(0,1)[i=1d1Φ(zyiσ)].absentsubscriptsupremumsubscript𝑦1subscript𝑦𝑑1𝑎𝑏2Δ𝑏𝑎subscript𝔼similar-to𝑧𝒩01delimited-[]superscriptsubscriptproduct𝑖1𝑑1Φ𝑧subscript𝑦𝑖2Δ𝜎subscript𝔼similar-to𝑧𝒩01delimited-[]superscriptsubscriptproduct𝑖1𝑑1Φ𝑧subscript𝑦𝑖𝜎\displaystyle\leq\sup_{y_{1},\ldots,y_{d-1}\in[a-b+2\Delta,b-a]}\frac{\mathbb{% E}_{z\sim\mathcal{N}(0,1)}\left[\prod_{i=1}^{d-1}\Phi\left(z-\frac{y_{i}-2% \Delta}{\sigma}\right)\right]}{\mathbb{E}_{z\sim\mathcal{N}(0,1)}\left[\prod_{% i=1}^{d-1}\Phi\left(z-\frac{y_{i}}{\sigma}\right)\right]}\enspace.≤ roman_sup start_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_y start_POSTSUBSCRIPT italic_d - 1 end_POSTSUBSCRIPT ∈ [ italic_a - italic_b + 2 roman_Δ , italic_b - italic_a ] end_POSTSUBSCRIPT divide start_ARG blackboard_E start_POSTSUBSCRIPT italic_z ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d - 1 end_POSTSUPERSCRIPT roman_Φ ( italic_z - divide start_ARG italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - 2 roman_Δ end_ARG start_ARG italic_σ end_ARG ) ] end_ARG start_ARG blackboard_E start_POSTSUBSCRIPT italic_z ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d - 1 end_POSTSUPERSCRIPT roman_Φ ( italic_z - divide start_ARG italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_σ end_ARG ) ] end_ARG . (2)
Proof.

Fix a pair of neighbouring datasets D𝐷Ditalic_D and Dsuperscript𝐷D^{\prime}italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. With a slight abuse of notation we let qi=qi(D)subscript𝑞𝑖subscript𝑞𝑖𝐷q_{i}=q_{i}(D)italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_D ) and qi=qi(D)superscriptsubscript𝑞𝑖subscript𝑞𝑖superscript𝐷q_{i}^{\prime}=q_{i}(D^{\prime})italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) for all i[d]𝑖delimited-[]𝑑i\in[d]italic_i ∈ [ italic_d ]. Recall that M(D)=argmaxi[d]qi+Zi𝑀𝐷subscriptargmax𝑖delimited-[]𝑑subscript𝑞𝑖subscript𝑍𝑖M(D)=\operatorname*{arg\,max}_{i\in[d]}q_{i}+Z_{i}italic_M ( italic_D ) = start_OPERATOR roman_arg roman_max end_OPERATOR start_POSTSUBSCRIPT italic_i ∈ [ italic_d ] end_POSTSUBSCRIPT italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT with Zi𝒩(0,σ2)similar-tosubscript𝑍𝑖𝒩0superscript𝜎2Z_{i}\sim\mathcal{N}(0,\sigma^{2})italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∼ caligraphic_N ( 0 , italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ), and |qiqi|Δsubscript𝑞𝑖superscriptsubscript𝑞𝑖Δ|q_{i}-q_{i}^{\prime}|\leq\Delta| italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT | ≤ roman_Δ for all i𝑖iitalic_i. Without loss of generality fix the output o=d𝑜𝑑o=ditalic_o = italic_d. Then we have:

Pr[M(D)=d]Pr𝑀𝐷𝑑\displaystyle\Pr[M(D)=d]roman_Pr [ italic_M ( italic_D ) = italic_d ] =Pr[i=1d1qd+Zd>qi+Zi]absentPrsuperscriptsubscript𝑖1𝑑1subscript𝑞𝑑subscript𝑍𝑑subscript𝑞𝑖subscript𝑍𝑖\displaystyle=\Pr[\wedge_{i=1}^{d-1}q_{d}+Z_{d}>q_{i}+Z_{i}]= roman_Pr [ ∧ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d - 1 end_POSTSUPERSCRIPT italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT + italic_Z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT > italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ] (3)
=Pr[i=1d1Zi<Zd+qdqi]absentPrsuperscriptsubscript𝑖1𝑑1subscript𝑍𝑖subscript𝑍𝑑subscript𝑞𝑑subscript𝑞𝑖\displaystyle=\Pr[\wedge_{i=1}^{d-1}Z_{i}<Z_{d}+q_{d}-q_{i}]= roman_Pr [ ∧ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d - 1 end_POSTSUPERSCRIPT italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_Z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT + italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ] (4)
=Pr[i=1d1Zi<Zd+qdqi+(qdqd)(qiqi)]absentPrsuperscriptsubscript𝑖1𝑑1subscript𝑍𝑖subscript𝑍𝑑superscriptsubscript𝑞𝑑superscriptsubscript𝑞𝑖subscript𝑞𝑑superscriptsubscript𝑞𝑑subscript𝑞𝑖superscriptsubscript𝑞𝑖\displaystyle=\Pr[\wedge_{i=1}^{d-1}Z_{i}<Z_{d}+q_{d}^{\prime}-q_{i}^{\prime}+% (q_{d}-q_{d}^{\prime})-(q_{i}-q_{i}^{\prime})]= roman_Pr [ ∧ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d - 1 end_POSTSUPERSCRIPT italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_Z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT + italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + ( italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT - italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - ( italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] (5)
Pr[i=1d1Zi<Zd+qdqi+2Δ]absentPrsuperscriptsubscript𝑖1𝑑1subscript𝑍𝑖subscript𝑍𝑑superscriptsubscript𝑞𝑑superscriptsubscript𝑞𝑖2Δ\displaystyle\leq\Pr[\wedge_{i=1}^{d-1}Z_{i}<Z_{d}+q_{d}^{\prime}-q_{i}^{% \prime}+2\Delta]≤ roman_Pr [ ∧ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d - 1 end_POSTSUPERSCRIPT italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_Z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT + italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + 2 roman_Δ ] (6)
=𝔼z𝒩(0,σ2)[Pr[i=1d1Zi<z+qdqi+2Δ]]absentsubscript𝔼similar-to𝑧𝒩0superscript𝜎2delimited-[]Prsuperscriptsubscript𝑖1𝑑1subscript𝑍𝑖𝑧superscriptsubscript𝑞𝑑superscriptsubscript𝑞𝑖2Δ\displaystyle=\mathbb{E}_{z\sim\mathcal{N}(0,\sigma^{2})}\left[\Pr[\wedge_{i=1% }^{d-1}Z_{i}<z+q_{d}^{\prime}-q_{i}^{\prime}+2\Delta]\right]= blackboard_E start_POSTSUBSCRIPT italic_z ∼ caligraphic_N ( 0 , italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT [ roman_Pr [ ∧ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d - 1 end_POSTSUPERSCRIPT italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_z + italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + 2 roman_Δ ] ] (7)
=𝔼z𝒩(0,σ2)[i=1d1Pr[Zi<z+qdqi+2Δ]]absentsubscript𝔼similar-to𝑧𝒩0superscript𝜎2delimited-[]superscriptsubscriptproduct𝑖1𝑑1Prsubscript𝑍𝑖𝑧superscriptsubscript𝑞𝑑superscriptsubscript𝑞𝑖2Δ\displaystyle=\mathbb{E}_{z\sim\mathcal{N}(0,\sigma^{2})}\left[\prod_{i=1}^{d-% 1}\Pr[Z_{i}<z+q_{d}^{\prime}-q_{i}^{\prime}+2\Delta]\right]= blackboard_E start_POSTSUBSCRIPT italic_z ∼ caligraphic_N ( 0 , italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT [ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d - 1 end_POSTSUPERSCRIPT roman_Pr [ italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_z + italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + 2 roman_Δ ] ] (8)
=𝔼z𝒩(0,σ2)[i=1d1Φ(z+qdqi+2Δσ)]absentsubscript𝔼similar-to𝑧𝒩0superscript𝜎2delimited-[]superscriptsubscriptproduct𝑖1𝑑1Φ𝑧superscriptsubscript𝑞𝑑superscriptsubscript𝑞𝑖2Δ𝜎\displaystyle=\mathbb{E}_{z\sim\mathcal{N}(0,\sigma^{2})}\left[\prod_{i=1}^{d-% 1}\Phi\left(\frac{z+q_{d}^{\prime}-q_{i}^{\prime}+2\Delta}{\sigma}\right)\right]= blackboard_E start_POSTSUBSCRIPT italic_z ∼ caligraphic_N ( 0 , italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT [ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d - 1 end_POSTSUPERSCRIPT roman_Φ ( divide start_ARG italic_z + italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + 2 roman_Δ end_ARG start_ARG italic_σ end_ARG ) ] (9)
=𝔼z𝒩(0,1)[i=1d1Φ(z+qdqi+2Δσ)].absentsubscript𝔼similar-to𝑧𝒩01delimited-[]superscriptsubscriptproduct𝑖1𝑑1Φ𝑧superscriptsubscript𝑞𝑑superscriptsubscript𝑞𝑖2Δ𝜎\displaystyle=\mathbb{E}_{z\sim\mathcal{N}(0,1)}\left[\prod_{i=1}^{d-1}\Phi% \left(z+\frac{q_{d}^{\prime}-q_{i}^{\prime}+2\Delta}{\sigma}\right)\right]\enspace.= blackboard_E start_POSTSUBSCRIPT italic_z ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d - 1 end_POSTSUPERSCRIPT roman_Φ ( italic_z + divide start_ARG italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + 2 roman_Δ end_ARG start_ARG italic_σ end_ARG ) ] . (10)

Therefore, writing yi=qiqdsubscript𝑦𝑖superscriptsubscript𝑞𝑖superscriptsubscript𝑞𝑑y_{i}=q_{i}^{\prime}-q_{d}^{\prime}italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT, we get

Pr[M(D)=o]Pr[M(D)=o]Pr𝑀𝐷𝑜Pr𝑀superscript𝐷𝑜\displaystyle\frac{\Pr[M(D)=o]}{\Pr[M(D^{\prime})=o]}divide start_ARG roman_Pr [ italic_M ( italic_D ) = italic_o ] end_ARG start_ARG roman_Pr [ italic_M ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_o ] end_ARG 𝔼z𝒩(0,1)[i=1d1Φ(zyi2Δσ)]𝔼z𝒩(0,1)[i=1d1Φ(zyiσ)].absentsubscript𝔼similar-to𝑧𝒩01delimited-[]superscriptsubscriptproduct𝑖1𝑑1Φ𝑧subscript𝑦𝑖2Δ𝜎subscript𝔼similar-to𝑧𝒩01delimited-[]superscriptsubscriptproduct𝑖1𝑑1Φ𝑧subscript𝑦𝑖𝜎\displaystyle\leq\frac{\mathbb{E}_{z\sim\mathcal{N}(0,1)}\left[\prod_{i=1}^{d-% 1}\Phi\left(z-\frac{y_{i}-2\Delta}{\sigma}\right)\right]}{\mathbb{E}_{z\sim% \mathcal{N}(0,1)}\left[\prod_{i=1}^{d-1}\Phi\left(z-\frac{y_{i}}{\sigma}\right% )\right]}\enspace.≤ divide start_ARG blackboard_E start_POSTSUBSCRIPT italic_z ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d - 1 end_POSTSUPERSCRIPT roman_Φ ( italic_z - divide start_ARG italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - 2 roman_Δ end_ARG start_ARG italic_σ end_ARG ) ] end_ARG start_ARG blackboard_E start_POSTSUBSCRIPT italic_z ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d - 1 end_POSTSUPERSCRIPT roman_Φ ( italic_z - divide start_ARG italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_σ end_ARG ) ] end_ARG . (11)

Note that a priori we have qi,qi[a,b]subscript𝑞𝑖superscriptsubscript𝑞𝑖𝑎𝑏q_{i},q_{i}^{\prime}\in[a,b]italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ [ italic_a , italic_b ] for all i[d]𝑖delimited-[]𝑑i\in[d]italic_i ∈ [ italic_d ]. However, for the above inequality to hold we set qiqi=Δsubscript𝑞𝑖superscriptsubscript𝑞𝑖Δq_{i}-q_{i}^{\prime}=-\Deltaitalic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = - roman_Δ for i<d𝑖𝑑i<ditalic_i < italic_d and qdqd=Δsubscript𝑞𝑑superscriptsubscript𝑞𝑑Δq_{d}-q_{d}^{\prime}=\Deltaitalic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT - italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = roman_Δ. These imply qi=qi+Δ[a+Δ,b]superscriptsubscript𝑞𝑖subscript𝑞𝑖Δ𝑎Δ𝑏q_{i}^{\prime}=q_{i}+\Delta\in[a+\Delta,b]italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + roman_Δ ∈ [ italic_a + roman_Δ , italic_b ] and qd=qdΔ[a,bΔ]superscriptsubscript𝑞𝑑superscriptsubscript𝑞𝑑Δ𝑎𝑏Δq_{d}^{\prime}=q_{d}^{\prime}-\Delta\in[a,b-\Delta]italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - roman_Δ ∈ [ italic_a , italic_b - roman_Δ ], so yi=qiqd[ab+2Δ,ba]subscript𝑦𝑖superscriptsubscript𝑞𝑖superscriptsubscript𝑞𝑑𝑎𝑏2Δ𝑏𝑎y_{i}=q_{i}^{\prime}-q_{d}^{\prime}\in[a-b+2\Delta,b-a]italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_q start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ [ italic_a - italic_b + 2 roman_Δ , italic_b - italic_a ] for i[d1]𝑖delimited-[]𝑑1i\in[d-1]italic_i ∈ [ italic_d - 1 ]. ∎

Given the result above, all that remains is to identify where the supremum over the yisubscript𝑦𝑖y_{i}italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is attained in Equation 2. To that end we will show that the ratio is non-decreasing in each of the yisubscript𝑦𝑖y_{i}italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. The following Hôpital-like monotonicity rule and property of ratios of moment generation functions will be useful.

Lemma 14 ((Pinelis,, 2002; Anderson et al.,, 1993)).

Let a<b𝑎𝑏-\infty\leq a<b\leq\infty- ∞ ≤ italic_a < italic_b ≤ ∞ and let f,g:[a,b]normal-:𝑓𝑔normal-→𝑎𝑏f,g:[a,b]\to\mathbb{R}italic_f , italic_g : [ italic_a , italic_b ] → blackboard_R be continuous differentiable functions on (a,b)𝑎𝑏(a,b)( italic_a , italic_b ), with f(a)=g(a)=0𝑓𝑎𝑔𝑎0f(a)=g(a)=0italic_f ( italic_a ) = italic_g ( italic_a ) = 0 or f(b)=g(b)=0𝑓𝑏𝑔𝑏0f(b)=g(b)=0italic_f ( italic_b ) = italic_g ( italic_b ) = 0, and g(x)0superscript𝑔normal-′𝑥0g^{\prime}(x)\neq 0italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_x ) ≠ 0 for x(a,b)𝑥𝑎𝑏x\in(a,b)italic_x ∈ ( italic_a , italic_b ). If f/gsuperscript𝑓normal-′superscript𝑔normal-′f^{\prime}/g^{\prime}italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT / italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is non-decreasing in (a,b)𝑎𝑏(a,b)( italic_a , italic_b ), then so is f/g𝑓𝑔f/gitalic_f / italic_g.

We say that a random variable Z𝑍Zitalic_Z has tails majorized by an exponential decay if the cumulative distribution function FZsubscript𝐹𝑍F_{Z}italic_F start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT of Z𝑍Zitalic_Z is such that there exist positive constants c1,c2subscript𝑐1subscript𝑐2c_{1},c_{2}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT satisfying FZ(z)=O(ec1z)subscript𝐹𝑍𝑧𝑂superscript𝑒subscript𝑐1𝑧F_{Z}(z)=O(e^{c_{1}z})italic_F start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT ( italic_z ) = italic_O ( italic_e start_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_z end_POSTSUPERSCRIPT ) for z𝑧z\to-\inftyitalic_z → - ∞ and 1FZ(z)=O(ec2z)1subscript𝐹𝑍𝑧𝑂superscript𝑒subscript𝑐2𝑧1-F_{Z}(z)=O(e^{-c_{2}z})1 - italic_F start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT ( italic_z ) = italic_O ( italic_e start_POSTSUPERSCRIPT - italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_z end_POSTSUPERSCRIPT ) for z𝑧z\to\inftyitalic_z → ∞. This is a well-known sufficient condition for the cumulant generating function KZ(s)=log𝔼[esZ]subscript𝐾𝑍𝑠𝔼delimited-[]superscript𝑒𝑠𝑍K_{Z}(s)=\log\mathbb{E}\left[e^{sZ}\right]italic_K start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT ( italic_s ) = roman_log blackboard_E [ italic_e start_POSTSUPERSCRIPT italic_s italic_Z end_POSTSUPERSCRIPT ] to exist.

Lemma 15.

Suppose Z𝑍Zitalic_Z is a random variable with tails majorized by an exponential decay. Then for any t>0𝑡0t>0italic_t > 0 the function

R(s)𝑅𝑠\displaystyle R(s)italic_R ( italic_s ) =𝔼[e(t+s)Z]𝔼[esZ],absent𝔼delimited-[]superscript𝑒𝑡𝑠𝑍𝔼delimited-[]superscript𝑒𝑠𝑍\displaystyle=\frac{\mathbb{E}\left[e^{(t+s)Z}\right]}{\mathbb{E}\left[e^{sZ}% \right]}\enspace,= divide start_ARG blackboard_E [ italic_e start_POSTSUPERSCRIPT ( italic_t + italic_s ) italic_Z end_POSTSUPERSCRIPT ] end_ARG start_ARG blackboard_E [ italic_e start_POSTSUPERSCRIPT italic_s italic_Z end_POSTSUPERSCRIPT ] end_ARG , (12)

is non-decreasing for all s𝑠s\in\mathbb{R}italic_s ∈ blackboard_R.

Proof.

Let ξ(s)=𝔼[esZ]𝜉𝑠𝔼delimited-[]superscript𝑒𝑠𝑍\xi(s)=\mathbb{E}\left[e^{sZ}\right]italic_ξ ( italic_s ) = blackboard_E [ italic_e start_POSTSUPERSCRIPT italic_s italic_Z end_POSTSUPERSCRIPT ] be the moment generating function of Z𝑍Zitalic_Z. Taking the derivative of R𝑅Ritalic_R we get:

R(s)=ξ(t+s)ξ(s)ξ(t+s)ξ(s)ξ(s)2.superscript𝑅𝑠superscript𝜉𝑡𝑠𝜉𝑠𝜉𝑡𝑠superscript𝜉𝑠𝜉superscript𝑠2\displaystyle R^{\prime}(s)=\frac{\xi^{\prime}(t+s)\xi(s)-\xi(t+s)\xi^{\prime}% (s)}{\xi(s)^{2}}\enspace.italic_R start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_s ) = divide start_ARG italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t + italic_s ) italic_ξ ( italic_s ) - italic_ξ ( italic_t + italic_s ) italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_s ) end_ARG start_ARG italic_ξ ( italic_s ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (13)

Thus, R(s)0superscript𝑅𝑠0R^{\prime}(s)\geq 0italic_R start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_s ) ≥ 0 if and only if ξ(t+s)ξ(s)ξ(t+s)ξ(s)0superscript𝜉𝑡𝑠𝜉𝑠𝜉𝑡𝑠superscript𝜉𝑠0\xi^{\prime}(t+s)\xi(s)-\xi(t+s)\xi^{\prime}(s)\geq 0italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t + italic_s ) italic_ξ ( italic_s ) - italic_ξ ( italic_t + italic_s ) italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_s ) ≥ 0, which is equivalent to

slogξ(t+s)=ξ(t+s)ξ(t+s)ξ(s)ξ(s)=slogξ(s).𝑠𝜉𝑡𝑠superscript𝜉𝑡𝑠𝜉𝑡𝑠superscript𝜉𝑠𝜉𝑠𝑠𝜉𝑠\displaystyle\frac{\partial}{\partial s}\log\xi(t+s)=\frac{\xi^{\prime}(t+s)}{% \xi(t+s)}\geq\frac{\xi^{\prime}(s)}{\xi(s)}=\frac{\partial}{\partial s}\log\xi% (s)\enspace.divide start_ARG ∂ end_ARG start_ARG ∂ italic_s end_ARG roman_log italic_ξ ( italic_t + italic_s ) = divide start_ARG italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_t + italic_s ) end_ARG start_ARG italic_ξ ( italic_t + italic_s ) end_ARG ≥ divide start_ARG italic_ξ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_s ) end_ARG start_ARG italic_ξ ( italic_s ) end_ARG = divide start_ARG ∂ end_ARG start_ARG ∂ italic_s end_ARG roman_log italic_ξ ( italic_s ) . (14)

Therefore R𝑅Ritalic_R is non-decreasing if the derivative of the cumulant generating function KZ(s)superscriptsubscript𝐾𝑍𝑠K_{Z}^{\prime}(s)italic_K start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_s ) (which exists by assumption) is non-decreasing. But note that when KZ(s)subscript𝐾𝑍𝑠K_{Z}(s)italic_K start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT ( italic_s ) exists it is known to be convex and infinitely differentiable, and therefore its derivative is non-decreasing. ∎

Note that by symmetry of the expression of interest in the yisubscript𝑦𝑖y_{i}italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT it suffices to establish monotonicity with respect to a single variable. Thus we define the following functions:

f(x)𝑓𝑥\displaystyle f(x)italic_f ( italic_x ) =𝔼z𝒩(t,1)[Φ(zx)i=1kΦ(zci)],absentsubscript𝔼similar-to𝑧𝒩𝑡1delimited-[]Φ𝑧𝑥superscriptsubscriptproduct𝑖1𝑘Φ𝑧subscript𝑐𝑖\displaystyle=\mathbb{E}_{z\sim\mathcal{N}(t,1)}\left[\Phi\left(z-x\right)% \prod_{i=1}^{k}\Phi\left(z-c_{i}\right)\right]\enspace,= blackboard_E start_POSTSUBSCRIPT italic_z ∼ caligraphic_N ( italic_t , 1 ) end_POSTSUBSCRIPT [ roman_Φ ( italic_z - italic_x ) ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT roman_Φ ( italic_z - italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ] , (15)
g(x)𝑔𝑥\displaystyle g(x)italic_g ( italic_x ) =𝔼z𝒩(0,1)[Φ(zx)i=1kΦ(zci)],absentsubscript𝔼similar-to𝑧𝒩01delimited-[]Φ𝑧𝑥superscriptsubscriptproduct𝑖1𝑘Φ𝑧subscript𝑐𝑖\displaystyle=\mathbb{E}_{z\sim\mathcal{N}(0,1)}\left[\Phi\left(z-x\right)% \prod_{i=1}^{k}\Phi\left(z-c_{i}\right)\right]\enspace,= blackboard_E start_POSTSUBSCRIPT italic_z ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ roman_Φ ( italic_z - italic_x ) ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT roman_Φ ( italic_z - italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ] , (16)

where t>0𝑡0t>0italic_t > 0 and c1,,cksubscript𝑐1subscript𝑐𝑘c_{1},\ldots,c_{k}\in\mathbb{R}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_c start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ blackboard_R are constants.

Lemma 16.

The function F(x)=f(x)/g(x)𝐹𝑥𝑓𝑥𝑔𝑥F(x)=f(x)/g(x)italic_F ( italic_x ) = italic_f ( italic_x ) / italic_g ( italic_x ) is non-decreasing for all x𝑥x\in\mathbb{R}italic_x ∈ blackboard_R.

Proof.

We are going to apply Lemma 14. First note that since limxΦ(zx)=0subscript𝑥Φ𝑧𝑥0\lim_{x\to\infty}\Phi(z-x)=0roman_lim start_POSTSUBSCRIPT italic_x → ∞ end_POSTSUBSCRIPT roman_Φ ( italic_z - italic_x ) = 0 we have limxf(x)=limxg(x)=0subscript𝑥𝑓𝑥subscript𝑥𝑔𝑥0\lim_{x\to\infty}f(x)=\lim_{x\to\infty}g(x)=0roman_lim start_POSTSUBSCRIPT italic_x → ∞ end_POSTSUBSCRIPT italic_f ( italic_x ) = roman_lim start_POSTSUBSCRIPT italic_x → ∞ end_POSTSUBSCRIPT italic_g ( italic_x ) = 0. Next we observe that, writing ϕ(u)=eu22/2πitalic-ϕ𝑢superscript𝑒superscript𝑢222𝜋\phi(u)=e^{-\frac{u^{2}}{2}}/\sqrt{2\pi}italic_ϕ ( italic_u ) = italic_e start_POSTSUPERSCRIPT - divide start_ARG italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT / square-root start_ARG 2 italic_π end_ARG for the density of a standard Gaussian random variable, we have

xΦ(zx)𝑥Φ𝑧𝑥\displaystyle\frac{\partial}{\partial x}\Phi(z-x)divide start_ARG ∂ end_ARG start_ARG ∂ italic_x end_ARG roman_Φ ( italic_z - italic_x ) =xzxϕ(u)𝑑u=ϕ(zx).absent𝑥superscriptsubscript𝑧𝑥italic-ϕ𝑢differential-d𝑢italic-ϕ𝑧𝑥\displaystyle=\frac{\partial}{\partial x}\int_{-\infty}^{z-x}\phi(u)du=-\phi(z% -x)\enspace.= divide start_ARG ∂ end_ARG start_ARG ∂ italic_x end_ARG ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z - italic_x end_POSTSUPERSCRIPT italic_ϕ ( italic_u ) italic_d italic_u = - italic_ϕ ( italic_z - italic_x ) . (17)

Thus, when computing f(x)superscript𝑓𝑥f^{\prime}(x)italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_x ) we will obtain a term of the form ϕ(zt)ϕ(zx)italic-ϕ𝑧𝑡italic-ϕ𝑧𝑥\phi(z-t)\phi(z-x)italic_ϕ ( italic_z - italic_t ) italic_ϕ ( italic_z - italic_x ), which can be simplified to

ϕ(zt)ϕ(zx)italic-ϕ𝑧𝑡italic-ϕ𝑧𝑥\displaystyle\phi(z-t)\phi(z-x)italic_ϕ ( italic_z - italic_t ) italic_ϕ ( italic_z - italic_x ) =12πe(zt)22e(zx)22=12πez2ez(x+t)et2+x22.absent12𝜋superscript𝑒superscript𝑧𝑡22superscript𝑒superscript𝑧𝑥2212𝜋superscript𝑒superscript𝑧2superscript𝑒𝑧𝑥𝑡superscript𝑒superscript𝑡2superscript𝑥22\displaystyle=\frac{1}{2\pi}e^{-\frac{(z-t)^{2}}{2}}e^{-\frac{(z-x)^{2}}{2}}=% \frac{1}{2\pi}e^{-z^{2}}e^{z(x+t)}e^{-\frac{t^{2}+x^{2}}{2}}\enspace.= divide start_ARG 1 end_ARG start_ARG 2 italic_π end_ARG italic_e start_POSTSUPERSCRIPT - divide start_ARG ( italic_z - italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - divide start_ARG ( italic_z - italic_x ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 italic_π end_ARG italic_e start_POSTSUPERSCRIPT - italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_z ( italic_x + italic_t ) end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT . (18)

From this we can now show that f(x)superscript𝑓𝑥f^{\prime}(x)italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_x ) is proportional to the moment generating function of a random variable Z𝑍Zitalic_Z with density p(z)=ez2i=1kΦ(zci)/(2πN)𝑝𝑧superscript𝑒superscript𝑧2superscriptsubscriptproduct𝑖1𝑘Φ𝑧subscript𝑐𝑖2𝜋𝑁p(z)=e^{-z^{2}}\prod_{i=1}^{k}\Phi\left(z-c_{i}\right)/(2\pi N)italic_p ( italic_z ) = italic_e start_POSTSUPERSCRIPT - italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT roman_Φ ( italic_z - italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) / ( 2 italic_π italic_N ) where N𝑁Nitalic_N is a normalizing constant (independent of x𝑥xitalic_x and t𝑡titalic_t):

f(x)superscript𝑓𝑥\displaystyle f^{\prime}(x)italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_x ) =𝔼z𝒩(t,1)[ϕ(zx)i=1kΦ(zci)]absentsubscript𝔼similar-to𝑧𝒩𝑡1delimited-[]italic-ϕ𝑧𝑥superscriptsubscriptproduct𝑖1𝑘Φ𝑧subscript𝑐𝑖\displaystyle=-\mathbb{E}_{z\sim\mathcal{N}(t,1)}\left[\phi\left(z-x\right)% \prod_{i=1}^{k}\Phi\left(z-c_{i}\right)\right]= - blackboard_E start_POSTSUBSCRIPT italic_z ∼ caligraphic_N ( italic_t , 1 ) end_POSTSUBSCRIPT [ italic_ϕ ( italic_z - italic_x ) ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT roman_Φ ( italic_z - italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ] (19)
=ϕ(zt)ϕ(zx)i=1kΦ(zci)dzabsentsuperscriptsubscriptitalic-ϕ𝑧𝑡italic-ϕ𝑧𝑥superscriptsubscriptproduct𝑖1𝑘Φ𝑧subscript𝑐𝑖𝑑𝑧\displaystyle=-\int_{-\infty}^{\infty}\phi(z-t)\phi(z-x)\prod_{i=1}^{k}\Phi% \left(z-c_{i}\right)dz= - ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ϕ ( italic_z - italic_t ) italic_ϕ ( italic_z - italic_x ) ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT roman_Φ ( italic_z - italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) italic_d italic_z (20)
=et2+x22Nez(x+t)p(z)𝑑zabsentsuperscript𝑒superscript𝑡2superscript𝑥22𝑁superscriptsubscriptsuperscript𝑒𝑧𝑥𝑡𝑝𝑧differential-d𝑧\displaystyle=-e^{-\frac{t^{2}+x^{2}}{2}}\cdot N\cdot\int_{-\infty}^{\infty}e^% {z(x+t)}p(z)dz= - italic_e start_POSTSUPERSCRIPT - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ⋅ italic_N ⋅ ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_z ( italic_x + italic_t ) end_POSTSUPERSCRIPT italic_p ( italic_z ) italic_d italic_z (21)
=et2+x22N𝔼Zp[e(x+t)Z].absentsuperscript𝑒superscript𝑡2superscript𝑥22𝑁subscript𝔼similar-to𝑍𝑝delimited-[]superscript𝑒𝑥𝑡𝑍\displaystyle=-e^{-\frac{t^{2}+x^{2}}{2}}\cdot N\cdot\mathbb{E}_{Z\sim p}\left% [e^{(x+t)Z}\right]\enspace.= - italic_e start_POSTSUPERSCRIPT - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ⋅ italic_N ⋅ blackboard_E start_POSTSUBSCRIPT italic_Z ∼ italic_p end_POSTSUBSCRIPT [ italic_e start_POSTSUPERSCRIPT ( italic_x + italic_t ) italic_Z end_POSTSUPERSCRIPT ] . (22)

A similar derivation also yields the following expression for g(x)superscript𝑔𝑥g^{\prime}(x)italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_x ):

g(x)superscript𝑔𝑥\displaystyle g^{\prime}(x)italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_x ) =ex22N𝔼Zp[exZ].absentsuperscript𝑒superscript𝑥22𝑁subscript𝔼similar-to𝑍𝑝delimited-[]superscript𝑒𝑥𝑍\displaystyle=-e^{-\frac{x^{2}}{2}}\cdot N\cdot\mathbb{E}_{Z\sim p}\left[e^{xZ% }\right]\enspace.= - italic_e start_POSTSUPERSCRIPT - divide start_ARG italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ⋅ italic_N ⋅ blackboard_E start_POSTSUBSCRIPT italic_Z ∼ italic_p end_POSTSUBSCRIPT [ italic_e start_POSTSUPERSCRIPT italic_x italic_Z end_POSTSUPERSCRIPT ] . (23)

Putting these two derivations together we obtain the following expression for the test function in Lemma 14:

H(x):=f(x)g(x)=et22𝔼Zp[e(x+t)Z]𝔼Zp[exZ].assign𝐻𝑥superscript𝑓𝑥superscript𝑔𝑥superscript𝑒superscript𝑡22subscript𝔼similar-to𝑍𝑝delimited-[]superscript𝑒𝑥𝑡𝑍subscript𝔼similar-to𝑍𝑝delimited-[]superscript𝑒𝑥𝑍\displaystyle H(x):=\frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{e^{-\frac{t^{2}}% {2}}\mathbb{E}_{Z\sim p}\left[e^{(x+t)Z}\right]}{\mathbb{E}_{Z\sim p}\left[e^{% xZ}\right]}\enspace.italic_H ( italic_x ) := divide start_ARG italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_x ) end_ARG start_ARG italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_x ) end_ARG = divide start_ARG italic_e start_POSTSUPERSCRIPT - divide start_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT blackboard_E start_POSTSUBSCRIPT italic_Z ∼ italic_p end_POSTSUBSCRIPT [ italic_e start_POSTSUPERSCRIPT ( italic_x + italic_t ) italic_Z end_POSTSUPERSCRIPT ] end_ARG start_ARG blackboard_E start_POSTSUBSCRIPT italic_Z ∼ italic_p end_POSTSUBSCRIPT [ italic_e start_POSTSUPERSCRIPT italic_x italic_Z end_POSTSUPERSCRIPT ] end_ARG . (24)

Noting that the distribution with density p(z)𝑝𝑧p(z)italic_p ( italic_z ) satisfies the condition of Lemma 15 we see that H𝐻Hitalic_H is non-decreasing and therefore F𝐹Fitalic_F is non-decreasing. ∎

With all these ingredients in place we see that Theorem 12 follows by using Lemma 16 to show that the supremum for each yisubscript𝑦𝑖y_{i}italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT in Lemma 13 is attained at yi=basubscript𝑦𝑖𝑏𝑎y_{i}=b-aitalic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_b - italic_a.

A.2 Pure DP Above Threshold

input : dataset D𝐷Ditalic_D; noise parameters σX,σZsubscript𝜎𝑋subscript𝜎𝑍\sigma_{X},\sigma_{Z}italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT , italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT; a stream of queries q1,q2,subscript𝑞1subscript𝑞2q_{1},q_{2},\ldotsitalic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_q start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , …; threshold ρ𝜌\rhoitalic_ρ.
ρ^=ρ+𝒩(0,σX2)^𝜌𝜌𝒩0superscriptsubscript𝜎𝑋2\hat{\rho}=\rho+\mathcal{N}(0,\sigma_{X}^{2})over^ start_ARG italic_ρ end_ARG = italic_ρ + caligraphic_N ( 0 , italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) for t=1,2,𝑡12normal-…t=1,2,\ldotsitalic_t = 1 , 2 , … do
       qt^=qt(D)+𝒩(0,σZ2)^subscript𝑞𝑡subscript𝑞𝑡𝐷𝒩0superscriptsubscript𝜎𝑍2\hat{q_{t}}=q_{t}(D)+\mathcal{N}(0,\sigma_{Z}^{2})over^ start_ARG italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_ARG = italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_D ) + caligraphic_N ( 0 , italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) if qt^ρ^normal-^subscript𝑞𝑡normal-^𝜌\hat{q_{t}}\geq\hat{\rho}over^ start_ARG italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_ARG ≥ over^ start_ARG italic_ρ end_ARG then
             Output xt=subscript𝑥𝑡topx_{t}=\topitalic_x start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ⊤ and HALT
       else
             Output xt=subscript𝑥𝑡bottomx_{t}=\botitalic_x start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ⊥
       end if
      
end for
Algorithm 3 Gaussian Above Threshold (Zhu and Wang,, 2020)
Theorem 17 (Pure Ex-post Gaussian Above Threshold).

Given a stream q1,q2,:𝒳[a,b]normal-:subscript𝑞1subscript𝑞2normal-…normal-→𝒳𝑎𝑏q_{1},q_{2},\ldots:\mathcal{X}\to[a,b]italic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_q start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … : caligraphic_X → [ italic_a , italic_b ] with global sensitivity Δnormal-Δ\Deltaroman_Δ, the Gaussian Above Threshold mechanism (Algorithm 3) satisfies ϵ𝑝𝑜𝑠𝑡subscriptitalic-ϵ𝑝𝑜𝑠𝑡\epsilon_{\text{post}}italic_ϵ start_POSTSUBSCRIPT post end_POSTSUBSCRIPT-ex-post-DP with

ϵ𝑝𝑜𝑠𝑡({t1})\displaystyle\epsilon_{\text{post}}(\{\bot^{t-1}\top\})italic_ϵ start_POSTSUBSCRIPT post end_POSTSUBSCRIPT ( { ⊥ start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT ⊤ } ) =𝔼x𝒩(0,1)[Φ(σXx+ρ(ba)+ΔσZ)(t1)Φ(σXxρ+a+ΔσZ)]𝔼x𝒩(0,1)[Φ(σXx+ρ(ba)σZ)(t1)Φ(σXxρ+aσZ)].absentsubscript𝔼similar-to𝑥𝒩01delimited-[]Φsuperscriptsubscript𝜎𝑋𝑥𝜌𝑏𝑎Δsubscript𝜎𝑍𝑡1Φsubscript𝜎𝑋𝑥𝜌𝑎Δsubscript𝜎𝑍subscript𝔼similar-to𝑥𝒩01delimited-[]Φsuperscriptsubscript𝜎𝑋𝑥𝜌𝑏𝑎subscript𝜎𝑍𝑡1Φsubscript𝜎𝑋𝑥𝜌𝑎subscript𝜎𝑍\displaystyle=\frac{\mathbb{E}_{x\sim\mathcal{N}(0,1)}\left[\Phi\left(\frac{% \sigma_{X}x+\rho-(b-a)+\Delta}{\sigma_{Z}}\right)^{(t-1)}\Phi\left(\frac{-% \sigma_{X}x-\rho+a+\Delta}{\sigma_{Z}}\right)\right]}{\mathbb{E}_{x\sim% \mathcal{N}(0,1)}\left[\Phi\left(\frac{\sigma_{X}x+\rho-(b-a)}{\sigma_{Z}}% \right)^{(t-1)}\Phi\left(\frac{-\sigma_{X}x-\rho+a}{\sigma_{Z}}\right)\right]}\enspace.= divide start_ARG blackboard_E start_POSTSUBSCRIPT italic_x ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ roman_Φ ( divide start_ARG italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x + italic_ρ - ( italic_b - italic_a ) + roman_Δ end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT ( italic_t - 1 ) end_POSTSUPERSCRIPT roman_Φ ( divide start_ARG - italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x - italic_ρ + italic_a + roman_Δ end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_ARG ) ] end_ARG start_ARG blackboard_E start_POSTSUBSCRIPT italic_x ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ roman_Φ ( divide start_ARG italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x + italic_ρ - ( italic_b - italic_a ) end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT ( italic_t - 1 ) end_POSTSUPERSCRIPT roman_Φ ( divide start_ARG - italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x - italic_ρ + italic_a end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_ARG ) ] end_ARG . (25)

Overall, our proof follows a similar strategy to the proof in the previous section.

Lemma 18.

Let M𝑀Mitalic_M be the Gaussian Above Threshold mechanism, with public threshold ρ0𝜌0\rho\geq 0italic_ρ ≥ 0, threshold noise of standard deviation σXsubscript𝜎𝑋\sigma_{X}italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT, and query noise of standard deviation σZsubscript𝜎𝑍\sigma_{Z}italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT applied to a stream of bounded queries q1,q2,:𝒳[a,b]normal-:subscript𝑞1subscript𝑞2normal-…normal-→𝒳𝑎𝑏q_{1},q_{2},\ldots:\mathcal{X}\to[a,b]italic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_q start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … : caligraphic_X → [ italic_a , italic_b ]. Then for any stopping time t1𝑡1t\geq 1italic_t ≥ 1 we have

supDDPr[M(D)=t]Pr[M(D)=t]supy1,,yt1[a+Δ,b],yt[a,bΔ]𝔼x𝒩(0,1)[i=1t1Φ(σXx+ρyi+ΔσZ)Φ(σXxρ+yt+ΔσZ)]𝔼x𝒩(0,1)[i=1t1Φ(σXx+ρyiσZ)Φ(σXxρ+ytσZ)].subscriptsupremumsimilar-to-or-equals𝐷superscript𝐷Pr𝑀𝐷𝑡Pr𝑀superscript𝐷𝑡subscriptsupremumformulae-sequencesubscript𝑦1subscript𝑦𝑡1𝑎Δ𝑏subscript𝑦𝑡𝑎𝑏Δsubscript𝔼similar-to𝑥𝒩01delimited-[]superscriptsubscriptproduct𝑖1𝑡1Φsubscript𝜎𝑋𝑥𝜌subscript𝑦𝑖Δsubscript𝜎𝑍Φsubscript𝜎𝑋𝑥𝜌subscript𝑦𝑡Δsubscript𝜎𝑍subscript𝔼similar-to𝑥𝒩01delimited-[]superscriptsubscriptproduct𝑖1𝑡1Φsubscript𝜎𝑋𝑥𝜌subscript𝑦𝑖subscript𝜎𝑍Φsubscript𝜎𝑋𝑥𝜌subscript𝑦𝑡subscript𝜎𝑍\displaystyle\sup_{D\simeq D^{\prime}}\frac{\Pr[M(D)=t]}{\Pr[M(D^{\prime})=t]}% \leq\sup_{y_{1},\ldots,y_{t-1}\in[a+\Delta,b],y_{t}\in[a,b-\Delta]}\frac{% \mathbb{E}_{x\sim\mathcal{N}(0,1)}\left[\prod_{i=1}^{t-1}\Phi\left(\frac{% \sigma_{X}x+\rho-y_{i}+\Delta}{\sigma_{Z}}\right)\cdot\Phi\left(\frac{-\sigma_% {X}x-\rho+y_{t}+\Delta}{\sigma_{Z}}\right)\right]}{\mathbb{E}_{x\sim\mathcal{N% }(0,1)}\left[\prod_{i=1}^{t-1}\Phi\left(\frac{\sigma_{X}x+\rho-y_{i}}{\sigma_{% Z}}\right)\cdot\Phi\left(\frac{-\sigma_{X}x-\rho+y_{t}}{\sigma_{Z}}\right)% \right]}\enspace.roman_sup start_POSTSUBSCRIPT italic_D ≃ italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT divide start_ARG roman_Pr [ italic_M ( italic_D ) = italic_t ] end_ARG start_ARG roman_Pr [ italic_M ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_t ] end_ARG ≤ roman_sup start_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_y start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT ∈ [ italic_a + roman_Δ , italic_b ] , italic_y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ∈ [ italic_a , italic_b - roman_Δ ] end_POSTSUBSCRIPT divide start_ARG blackboard_E start_POSTSUBSCRIPT italic_x ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT roman_Φ ( divide start_ARG italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x + italic_ρ - italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + roman_Δ end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_ARG ) ⋅ roman_Φ ( divide start_ARG - italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x - italic_ρ + italic_y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + roman_Δ end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_ARG ) ] end_ARG start_ARG blackboard_E start_POSTSUBSCRIPT italic_x ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT roman_Φ ( divide start_ARG italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x + italic_ρ - italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_ARG ) ⋅ roman_Φ ( divide start_ARG - italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x - italic_ρ + italic_y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_ARG ) ] end_ARG . (26)
Proof.

Fix a pair of datasets DDsimilar-to-or-equals𝐷superscript𝐷D\simeq D^{\prime}italic_D ≃ italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. Like before, we let qt=qt(D)subscript𝑞𝑡subscript𝑞𝑡𝐷q_{t}=q_{t}(D)italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_D ) and qt=qt(D)superscriptsubscript𝑞𝑡subscript𝑞𝑡superscript𝐷q_{t}^{\prime}=q_{t}(D^{\prime})italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ); they satisfy |qtqt|Δsubscript𝑞𝑡superscriptsubscript𝑞𝑡Δ|q_{t}-q_{t}^{\prime}|\leq\Delta| italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT | ≤ roman_Δ. First of all we bound the probability that the mechanism on input D𝐷Ditalic_D stops at time t𝑡titalic_t as follows:

Pr[M(D)=t]Pr𝑀𝐷𝑡\displaystyle\Pr[M(D)=t]roman_Pr [ italic_M ( italic_D ) = italic_t ] =Pr[i=1t1{qi+Zi<X+ρ}{X+ρ<qt+Zt}]absentPrsuperscriptsubscript𝑖1𝑡1subscript𝑞𝑖subscript𝑍𝑖𝑋𝜌𝑋𝜌subscript𝑞𝑡subscript𝑍𝑡\displaystyle=\Pr[\wedge_{i=1}^{t-1}\{q_{i}+Z_{i}<X+\rho\}\wedge\{X+\rho<q_{t}% +Z_{t}\}]= roman_Pr [ ∧ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT { italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_X + italic_ρ } ∧ { italic_X + italic_ρ < italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_Z start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } ] (27)
=Pr[i=1t1{Zi<X+ρqi}{X+ρqt<Zt}]absentPrsuperscriptsubscript𝑖1𝑡1subscript𝑍𝑖𝑋𝜌subscript𝑞𝑖𝑋𝜌subscript𝑞𝑡subscript𝑍𝑡\displaystyle=\Pr[\wedge_{i=1}^{t-1}\{Z_{i}<X+\rho-q_{i}\}\wedge\{X+\rho-q_{t}% <Z_{t}\}]= roman_Pr [ ∧ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT { italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_X + italic_ρ - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } ∧ { italic_X + italic_ρ - italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT < italic_Z start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } ] (28)
=Pr[i=1t1{Zi<X+ρqi(qiqi)}{X+ρqt(qtqt)<Zt}]absentPrsuperscriptsubscript𝑖1𝑡1subscript𝑍𝑖𝑋𝜌superscriptsubscript𝑞𝑖subscript𝑞𝑖superscriptsubscript𝑞𝑖𝑋𝜌subscriptsuperscript𝑞𝑡subscript𝑞𝑡superscriptsubscript𝑞𝑡subscript𝑍𝑡\displaystyle=\Pr[\wedge_{i=1}^{t-1}\{Z_{i}<X+\rho-q_{i}^{\prime}-(q_{i}-q_{i}% ^{\prime})\}\wedge\{X+\rho-q^{\prime}_{t}-(q_{t}-q_{t}^{\prime})<Z_{t}\}]= roman_Pr [ ∧ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT { italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_X + italic_ρ - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - ( italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) } ∧ { italic_X + italic_ρ - italic_q start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - ( italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) < italic_Z start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } ] (29)
Pr[i=1t1{Zi<X+ρqi+Δ}{X+ρqtΔ<Zt}]absentPrsuperscriptsubscript𝑖1𝑡1subscript𝑍𝑖𝑋𝜌superscriptsubscript𝑞𝑖Δ𝑋𝜌subscriptsuperscript𝑞𝑡Δsubscript𝑍𝑡\displaystyle\leq\Pr[\wedge_{i=1}^{t-1}\{Z_{i}<X+\rho-q_{i}^{\prime}+\Delta\}% \wedge\{X+\rho-q^{\prime}_{t}-\Delta<Z_{t}\}]≤ roman_Pr [ ∧ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT { italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_X + italic_ρ - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + roman_Δ } ∧ { italic_X + italic_ρ - italic_q start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - roman_Δ < italic_Z start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } ] (30)
=𝔼x𝒩(0,σX2)[Pr[i=1t1{Zi<x+ρqi+Δ}{x+ρqtΔ<Zt}]]absentsubscript𝔼similar-to𝑥𝒩0superscriptsubscript𝜎𝑋2delimited-[]Prsuperscriptsubscript𝑖1𝑡1subscript𝑍𝑖𝑥𝜌superscriptsubscript𝑞𝑖Δ𝑥𝜌subscriptsuperscript𝑞𝑡Δsubscript𝑍𝑡\displaystyle=\mathbb{E}_{x\sim\mathcal{N}(0,\sigma_{X}^{2})}\left[\Pr[\wedge_% {i=1}^{t-1}\{Z_{i}<x+\rho-q_{i}^{\prime}+\Delta\}\wedge\{x+\rho-q^{\prime}_{t}% -\Delta<Z_{t}\}]\right]= blackboard_E start_POSTSUBSCRIPT italic_x ∼ caligraphic_N ( 0 , italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT [ roman_Pr [ ∧ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT { italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_x + italic_ρ - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + roman_Δ } ∧ { italic_x + italic_ρ - italic_q start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - roman_Δ < italic_Z start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } ] ] (31)
=𝔼x𝒩(0,σX2)[i=1t1Pr[Zi<x+ρqi+Δ]Pr[x+ρqtΔ<Zt]]absentsubscript𝔼similar-to𝑥𝒩0superscriptsubscript𝜎𝑋2delimited-[]superscriptsubscriptproduct𝑖1𝑡1Prsubscript𝑍𝑖𝑥𝜌superscriptsubscript𝑞𝑖ΔPr𝑥𝜌subscriptsuperscript𝑞𝑡Δsubscript𝑍𝑡\displaystyle=\mathbb{E}_{x\sim\mathcal{N}(0,\sigma_{X}^{2})}\left[\prod_{i=1}% ^{t-1}\Pr[Z_{i}<x+\rho-q_{i}^{\prime}+\Delta]\cdot\Pr[x+\rho-q^{\prime}_{t}-% \Delta<Z_{t}]\right]= blackboard_E start_POSTSUBSCRIPT italic_x ∼ caligraphic_N ( 0 , italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT [ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT roman_Pr [ italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_x + italic_ρ - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + roman_Δ ] ⋅ roman_Pr [ italic_x + italic_ρ - italic_q start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - roman_Δ < italic_Z start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ] ] (32)
=𝔼x𝒩(0,σX2)[i=1t1Pr[Zi<x+ρqi+Δ]Pr[Zt<xρ+qt+Δ]]absentsubscript𝔼similar-to𝑥𝒩0superscriptsubscript𝜎𝑋2delimited-[]superscriptsubscriptproduct𝑖1𝑡1Prsubscript𝑍𝑖𝑥𝜌superscriptsubscript𝑞𝑖ΔPrsubscript𝑍𝑡𝑥𝜌subscriptsuperscript𝑞𝑡Δ\displaystyle=\mathbb{E}_{x\sim\mathcal{N}(0,\sigma_{X}^{2})}\left[\prod_{i=1}% ^{t-1}\Pr[Z_{i}<x+\rho-q_{i}^{\prime}+\Delta]\cdot\Pr[-Z_{t}<-x-\rho+q^{\prime% }_{t}+\Delta]\right]= blackboard_E start_POSTSUBSCRIPT italic_x ∼ caligraphic_N ( 0 , italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT [ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT roman_Pr [ italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_x + italic_ρ - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + roman_Δ ] ⋅ roman_Pr [ - italic_Z start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT < - italic_x - italic_ρ + italic_q start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + roman_Δ ] ] (33)
=𝔼x𝒩(0,σX2)[i=1t1Pr[Zi<x+ρqi+Δ]Pr[Zt<xρ+qt+Δ]]absentsubscript𝔼similar-to𝑥𝒩0superscriptsubscript𝜎𝑋2delimited-[]superscriptsubscriptproduct𝑖1𝑡1Prsubscript𝑍𝑖𝑥𝜌superscriptsubscript𝑞𝑖ΔPrsubscript𝑍𝑡𝑥𝜌subscriptsuperscript𝑞𝑡Δ\displaystyle=\mathbb{E}_{x\sim\mathcal{N}(0,\sigma_{X}^{2})}\left[\prod_{i=1}% ^{t-1}\Pr[Z_{i}<x+\rho-q_{i}^{\prime}+\Delta]\cdot\Pr[Z_{t}<-x-\rho+q^{\prime}% _{t}+\Delta]\right]= blackboard_E start_POSTSUBSCRIPT italic_x ∼ caligraphic_N ( 0 , italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT [ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT roman_Pr [ italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < italic_x + italic_ρ - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + roman_Δ ] ⋅ roman_Pr [ italic_Z start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT < - italic_x - italic_ρ + italic_q start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + roman_Δ ] ] (34)
=𝔼x𝒩(0,σX2)[i=1t1Φ(x+ρqi+ΔσZ)Φ(xρ+qt+ΔσZ)]absentsubscript𝔼similar-to𝑥𝒩0superscriptsubscript𝜎𝑋2delimited-[]superscriptsubscriptproduct𝑖1𝑡1Φ𝑥𝜌superscriptsubscript𝑞𝑖Δsubscript𝜎𝑍Φ𝑥𝜌subscriptsuperscript𝑞𝑡Δsubscript𝜎𝑍\displaystyle=\mathbb{E}_{x\sim\mathcal{N}(0,\sigma_{X}^{2})}\left[\prod_{i=1}% ^{t-1}\Phi\left(\frac{x+\rho-q_{i}^{\prime}+\Delta}{\sigma_{Z}}\right)\cdot% \Phi\left(\frac{-x-\rho+q^{\prime}_{t}+\Delta}{\sigma_{Z}}\right)\right]= blackboard_E start_POSTSUBSCRIPT italic_x ∼ caligraphic_N ( 0 , italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_POSTSUBSCRIPT [ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT roman_Φ ( divide start_ARG italic_x + italic_ρ - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + roman_Δ end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_ARG ) ⋅ roman_Φ ( divide start_ARG - italic_x - italic_ρ + italic_q start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + roman_Δ end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_ARG ) ] (35)
=𝔼x𝒩(0,1)[i=1t1Φ(σXx+ρqi+ΔσZ)Φ(σXxρ+qt+ΔσZ)].absentsubscript𝔼similar-to𝑥𝒩01delimited-[]superscriptsubscriptproduct𝑖1𝑡1Φsubscript𝜎𝑋𝑥𝜌superscriptsubscript𝑞𝑖Δsubscript𝜎𝑍Φsubscript𝜎𝑋𝑥𝜌subscriptsuperscript𝑞𝑡Δsubscript𝜎𝑍\displaystyle=\mathbb{E}_{x\sim\mathcal{N}(0,1)}\left[\prod_{i=1}^{t-1}\Phi% \left(\frac{\sigma_{X}x+\rho-q_{i}^{\prime}+\Delta}{\sigma_{Z}}\right)\cdot% \Phi\left(\frac{-\sigma_{X}x-\rho+q^{\prime}_{t}+\Delta}{\sigma_{Z}}\right)% \right]\enspace.= blackboard_E start_POSTSUBSCRIPT italic_x ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT roman_Φ ( divide start_ARG italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x + italic_ρ - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + roman_Δ end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_ARG ) ⋅ roman_Φ ( divide start_ARG - italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x - italic_ρ + italic_q start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + roman_Δ end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_ARG ) ] . (36)

A similar derivation also yields:

Pr[M(D)=t]Pr𝑀superscript𝐷𝑡\displaystyle\Pr[M(D^{\prime})=t]roman_Pr [ italic_M ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_t ] =𝔼x𝒩(0,1)[i=1t1Φ(σXx+ρqiσZ)Φ(σXxρ+qtσZ)].absentsubscript𝔼similar-to𝑥𝒩01delimited-[]superscriptsubscriptproduct𝑖1𝑡1Φsubscript𝜎𝑋𝑥𝜌superscriptsubscript𝑞𝑖subscript𝜎𝑍Φsubscript𝜎𝑋𝑥𝜌subscriptsuperscript𝑞𝑡subscript𝜎𝑍\displaystyle=\mathbb{E}_{x\sim\mathcal{N}(0,1)}\left[\prod_{i=1}^{t-1}\Phi% \left(\frac{\sigma_{X}x+\rho-q_{i}^{\prime}}{\sigma_{Z}}\right)\cdot\Phi\left(% \frac{-\sigma_{X}x-\rho+q^{\prime}_{t}}{\sigma_{Z}}\right)\right]\enspace.= blackboard_E start_POSTSUBSCRIPT italic_x ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT roman_Φ ( divide start_ARG italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x + italic_ρ - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_ARG ) ⋅ roman_Φ ( divide start_ARG - italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x - italic_ρ + italic_q start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_ARG ) ] . (37)

Thus, the ratio of probabilities of M𝑀Mitalic_M stopping at time t𝑡titalic_t on D𝐷Ditalic_D and Dsuperscript𝐷D^{\prime}italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT can be bounded as:

Pr[M(D)=t]Pr[M(D)=t]𝔼x𝒩(0,1)[i=1t1Φ(σXx+ρqi+ΔσZ)Φ(σXxρ+qt+ΔσZ)]𝔼x𝒩(0,1)[i=1t1Φ(σXx+ρqiσZ)Φ(σXxρ+qtσZ)].Pr𝑀𝐷𝑡Pr𝑀superscript𝐷𝑡subscript𝔼similar-to𝑥𝒩01delimited-[]superscriptsubscriptproduct𝑖1𝑡1Φsubscript𝜎𝑋𝑥𝜌superscriptsubscript𝑞𝑖Δsubscript𝜎𝑍Φsubscript𝜎𝑋𝑥𝜌superscriptsubscript𝑞𝑡Δsubscript𝜎𝑍subscript𝔼similar-to𝑥𝒩01delimited-[]superscriptsubscriptproduct𝑖1𝑡1Φsubscript𝜎𝑋𝑥𝜌superscriptsubscript𝑞𝑖subscript𝜎𝑍Φsubscript𝜎𝑋𝑥𝜌superscriptsubscript𝑞𝑡subscript𝜎𝑍\displaystyle\frac{\Pr[M(D)=t]}{\Pr[M(D^{\prime})=t]}\leq\frac{\mathbb{E}_{x% \sim\mathcal{N}(0,1)}\left[\prod_{i=1}^{t-1}\Phi\left(\frac{\sigma_{X}x+\rho-q% _{i}^{\prime}+\Delta}{\sigma_{Z}}\right)\cdot\Phi\left(\frac{-\sigma_{X}x-\rho% +q_{t}^{\prime}+\Delta}{\sigma_{Z}}\right)\right]}{\mathbb{E}_{x\sim\mathcal{N% }(0,1)}\left[\prod_{i=1}^{t-1}\Phi\left(\frac{\sigma_{X}x+\rho-q_{i}^{\prime}}% {\sigma_{Z}}\right)\cdot\Phi\left(\frac{-\sigma_{X}x-\rho+q_{t}^{\prime}}{% \sigma_{Z}}\right)\right]}\enspace.divide start_ARG roman_Pr [ italic_M ( italic_D ) = italic_t ] end_ARG start_ARG roman_Pr [ italic_M ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_t ] end_ARG ≤ divide start_ARG blackboard_E start_POSTSUBSCRIPT italic_x ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT roman_Φ ( divide start_ARG italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x + italic_ρ - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + roman_Δ end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_ARG ) ⋅ roman_Φ ( divide start_ARG - italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x - italic_ρ + italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + roman_Δ end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_ARG ) ] end_ARG start_ARG blackboard_E start_POSTSUBSCRIPT italic_x ∼ caligraphic_N ( 0 , 1 ) end_POSTSUBSCRIPT [ ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT roman_Φ ( divide start_ARG italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x + italic_ρ - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_ARG ) ⋅ roman_Φ ( divide start_ARG - italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_x - italic_ρ + italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT end_ARG ) ] end_ARG . (38)

Now note that in the bound we set qiqi=Δsubscript𝑞𝑖superscriptsubscript𝑞𝑖Δq_{i}-q_{i}^{\prime}=-\Deltaitalic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = - roman_Δ for i<t𝑖𝑡i<titalic_i < italic_t and qtqt=Δsubscript𝑞𝑡superscriptsubscript𝑞𝑡Δq_{t}-q_{t}^{\prime}=\Deltaitalic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = roman_Δ. Since all the queries are bounded in [a,b]𝑎𝑏[a,b][ italic_a , italic_b ] we have that yi=qi=qi+Δ[a+Δ,b]subscript𝑦𝑖superscriptsubscript𝑞𝑖subscript𝑞𝑖Δ𝑎Δ𝑏y_{i}=q_{i}^{\prime}=q_{i}+\Delta\in[a+\Delta,b]italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + roman_Δ ∈ [ italic_a + roman_Δ , italic_b ] for i<t𝑖𝑡i<titalic_i < italic_t and yt=qt=qtΔ[a,bΔ]subscript𝑦𝑡superscriptsubscript𝑞𝑡subscript𝑞𝑡Δ𝑎𝑏Δy_{t}=q_{t}^{\prime}=q_{t}-\Delta\in[a,b-\Delta]italic_y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - roman_Δ ∈ [ italic_a , italic_b - roman_Δ ]. Taking the supremum over these ranges completes the proof. ∎

To conclude, we show that the supremum in Lemma 18 is attained at y1==yt1=bsubscript𝑦1subscript𝑦𝑡1𝑏y_{1}=\cdots=y_{t-1}=bitalic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = ⋯ = italic_y start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT = italic_b and yt=asubscript𝑦𝑡𝑎y_{t}=aitalic_y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_a. This follows from observing that the ratio is increasing in y1,,yt1subscript𝑦1subscript𝑦𝑡1y_{1},\ldots,y_{t-1}italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_y start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT and decreasing in ytsubscript𝑦𝑡y_{t}italic_y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT, which follows from the same argument used in Lemma 16.

A.3 Filtered Self-Reporting Composition

Theorem 19.

Suppose the mechanisms M1,M2,subscript𝑀1subscript𝑀2normal-…M_{1},M_{2},\ldotsitalic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … provided to Algorithm 4 are such Mtsubscript𝑀𝑡M_{t}italic_M start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is (ϵmax,t,δ)subscriptitalic-ϵ𝑡𝛿(\epsilon_{\max,t},\delta)( italic_ϵ start_POSTSUBSCRIPT roman_max , italic_t end_POSTSUBSCRIPT , italic_δ )-pDP and ϵ𝑝𝑜𝑠𝑡,tsubscriptitalic-ϵ𝑝𝑜𝑠𝑡𝑡\epsilon_{\text{post},t}italic_ϵ start_POSTSUBSCRIPT post , italic_t end_POSTSUBSCRIPT-ex-post-DP for all t𝑡titalic_t. Then Algorithm 4 satisfies (ϵ,δ)italic-ϵ𝛿(\epsilon,\delta)( italic_ϵ , italic_δ )-DP.

input : dataset D𝐷Ditalic_D; privacy budget ϵitalic-ϵ\epsilonitalic_ϵ; a stream of adaptive mechanisms M1,M2,subscript𝑀1subscript𝑀2M_{1},M_{2},\ldotsitalic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , …; a stream of values ϵmax,1,ϵmax,2,subscriptitalic-ϵ1subscriptitalic-ϵ2\epsilon_{\max,1},\epsilon_{\max,2},\ldotsitalic_ϵ start_POSTSUBSCRIPT roman_max , 1 end_POSTSUBSCRIPT , italic_ϵ start_POSTSUBSCRIPT roman_max , 2 end_POSTSUBSCRIPT , …; a stream of functions ϵpost,1,ϵpost,2,subscriptitalic-ϵpost1subscriptitalic-ϵpost2\epsilon_{\text{post},1},\epsilon_{\text{post},2},\ldotsitalic_ϵ start_POSTSUBSCRIPT post , 1 end_POSTSUBSCRIPT , italic_ϵ start_POSTSUBSCRIPT post , 2 end_POSTSUBSCRIPT , …
for t=1,2,𝑡12normal-…t=1,2,\ldotsitalic_t = 1 , 2 , … do
       if i=1t1ϵi+ϵmax,tϵsuperscriptsubscript𝑖1𝑡1subscriptitalic-ϵ𝑖subscriptitalic-ϵ𝑡italic-ϵ\sum_{i=1}^{t-1}\epsilon_{i}+\epsilon_{\max,t}\geq\epsilon∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT italic_ϵ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_ϵ start_POSTSUBSCRIPT roman_max , italic_t end_POSTSUBSCRIPT ≥ italic_ϵ then
             HALT
       else
             ot=Mt(D;o1:t1)subscript𝑜𝑡subscript𝑀𝑡𝐷subscript𝑜:1𝑡1o_{t}=M_{t}(D;o_{1:t-1})italic_o start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_M start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_D ; italic_o start_POSTSUBSCRIPT 1 : italic_t - 1 end_POSTSUBSCRIPT ) ϵt=ϵpost,t(ot)subscriptitalic-ϵ𝑡subscriptitalic-ϵpost𝑡subscript𝑜𝑡\epsilon_{t}=\epsilon_{\text{post},t}(o_{t})italic_ϵ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_ϵ start_POSTSUBSCRIPT post , italic_t end_POSTSUBSCRIPT ( italic_o start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) Release otsubscript𝑜𝑡o_{t}italic_o start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT
       end if
      
end for
Algorithm 4 Filtered Composition, Ex-Post Privacy
Proof.

We will prove that the mechanism satisfies (ϵ,δ)italic-ϵ𝛿(\epsilon,\delta)( italic_ϵ , italic_δ )-pDP and therefore also (ϵ,δ)italic-ϵ𝛿(\epsilon,\delta)( italic_ϵ , italic_δ )-DP. Let M𝑀Mitalic_M denote the mechanism and fix a pair of neighboring datasets D𝐷Ditalic_D and Dsuperscript𝐷D^{\prime}italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. Let o=o1,,oTM(D)formulae-sequence𝑜subscript𝑜1similar-tosubscript𝑜𝑇𝑀𝐷o=o_{1},\ldots,o_{T}\sim M(D)italic_o = italic_o start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_o start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ∼ italic_M ( italic_D ) be sampled from the mechanism (here T𝑇Titalic_T is a random stopping time) and consider the privacy loss random variable

(o)𝑜\displaystyle\mathcal{L}(o)caligraphic_L ( italic_o ) =logPr[M(D)=o]Pr[M(D)=o]absentPr𝑀𝐷𝑜Pr𝑀superscript𝐷𝑜\displaystyle=\log\frac{\Pr[M(D)=o]}{\Pr[M(D^{\prime})=o]}= roman_log divide start_ARG roman_Pr [ italic_M ( italic_D ) = italic_o ] end_ARG start_ARG roman_Pr [ italic_M ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_o ] end_ARG
=i=1TlogPr[Mi(D;o1:i1)=oi]Pr[Mi(D;o1:i1)=oi]+logPr[M(D) halts after outputting o1:T]Pr[M(D) halts after outputting o1:T].absentsuperscriptsubscript𝑖1𝑇Prsubscript𝑀𝑖𝐷subscript𝑜:1𝑖1subscript𝑜𝑖Prsubscript𝑀𝑖superscript𝐷subscript𝑜:1𝑖1subscript𝑜𝑖PrM(D) halts after outputting o1:TPrM(D) halts after outputting o1:T\displaystyle=\sum_{i=1}^{T}\log\frac{\Pr[M_{i}(D;o_{1:i-1})=o_{i}]}{\Pr[M_{i}% (D^{\prime};o_{1:i-1})=o_{i}]}+\log\frac{\Pr[\text{$M(D)$ halts after % outputting $o_{1:T}$}]}{\Pr[\text{$M(D^{\prime})$ halts after outputting $o_{1% :T}$}]}\enspace.= ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT roman_log divide start_ARG roman_Pr [ italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_D ; italic_o start_POSTSUBSCRIPT 1 : italic_i - 1 end_POSTSUBSCRIPT ) = italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ] end_ARG start_ARG roman_Pr [ italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ; italic_o start_POSTSUBSCRIPT 1 : italic_i - 1 end_POSTSUBSCRIPT ) = italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ] end_ARG + roman_log divide start_ARG roman_Pr [ italic_M ( italic_D ) halts after outputting italic_o start_POSTSUBSCRIPT 1 : italic_T end_POSTSUBSCRIPT ] end_ARG start_ARG roman_Pr [ italic_M ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) halts after outputting italic_o start_POSTSUBSCRIPT 1 : italic_T end_POSTSUBSCRIPT ] end_ARG .

First of all we observe that given the outputs up to a certain time step t𝑡titalic_t, the stopping condition is deterministic and independent of the dataset. Thus, the last term above vanishes. Furthermore, since each of the mechanisms Misubscript𝑀𝑖M_{i}italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT satisfies ϵpost,isubscriptitalic-ϵpost𝑖\epsilon_{\text{post},i}italic_ϵ start_POSTSUBSCRIPT post , italic_i end_POSTSUBSCRIPT-ex-post-DP, for all i[T1]𝑖delimited-[]𝑇1i\in[T-1]italic_i ∈ [ italic_T - 1 ] we have

logPr[Mi(D;o1:i1)=oi]Pr[Mi(D;o1:i1)=oi]ϵpost,i(oi).Prsubscript𝑀𝑖𝐷subscript𝑜:1𝑖1subscript𝑜𝑖Prsubscript𝑀𝑖superscript𝐷subscript𝑜:1𝑖1subscript𝑜𝑖subscriptitalic-ϵpost𝑖subscript𝑜𝑖\displaystyle\log\frac{\Pr[M_{i}(D;o_{1:i-1})=o_{i}]}{\Pr[M_{i}(D^{\prime};o_{% 1:i-1})=o_{i}]}\leq\epsilon_{\text{post},i}(o_{i})\enspace.roman_log divide start_ARG roman_Pr [ italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_D ; italic_o start_POSTSUBSCRIPT 1 : italic_i - 1 end_POSTSUBSCRIPT ) = italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ] end_ARG start_ARG roman_Pr [ italic_M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ; italic_o start_POSTSUBSCRIPT 1 : italic_i - 1 end_POSTSUBSCRIPT ) = italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ] end_ARG ≤ italic_ϵ start_POSTSUBSCRIPT post , italic_i end_POSTSUBSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) .

In addition, since MTsubscript𝑀𝑇M_{T}italic_M start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT is (ϵmax,T,δ)subscriptitalic-ϵ𝑇𝛿(\epsilon_{\max,T},\delta)( italic_ϵ start_POSTSUBSCRIPT roman_max , italic_T end_POSTSUBSCRIPT , italic_δ )-pDP, we also have

Pr[logPr[MT(D;o1:T1)=oT]Pr[MT(D;o1:T1)=oT]>ϵmax,T]δ.PrPrsubscript𝑀𝑇𝐷subscript𝑜:1𝑇1subscript𝑜𝑇Prsubscript𝑀𝑇superscript𝐷subscript𝑜:1𝑇1subscript𝑜𝑇subscriptitalic-ϵ𝑇𝛿\displaystyle\Pr\left[\log\frac{\Pr[M_{T}(D;o_{1:T-1})=o_{T}]}{\Pr[M_{T}(D^{% \prime};o_{1:T-1})=o_{T}]}>\epsilon_{\max,T}\right]\leq\delta\enspace.roman_Pr [ roman_log divide start_ARG roman_Pr [ italic_M start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_D ; italic_o start_POSTSUBSCRIPT 1 : italic_T - 1 end_POSTSUBSCRIPT ) = italic_o start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ] end_ARG start_ARG roman_Pr [ italic_M start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ; italic_o start_POSTSUBSCRIPT 1 : italic_T - 1 end_POSTSUBSCRIPT ) = italic_o start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ] end_ARG > italic_ϵ start_POSTSUBSCRIPT roman_max , italic_T end_POSTSUBSCRIPT ] ≤ italic_δ .

Now, since the stopping rule guarantees that i=1T1ϵpost,i(oi)+ϵmax,Tϵsuperscriptsubscript𝑖1𝑇1subscriptitalic-ϵpost𝑖subscript𝑜𝑖subscriptitalic-ϵ𝑇italic-ϵ\sum_{i=1}^{T-1}\epsilon_{\text{post},i}(o_{i})+\epsilon_{\max,T}\leq\epsilon∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T - 1 end_POSTSUPERSCRIPT italic_ϵ start_POSTSUBSCRIPT post , italic_i end_POSTSUBSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) + italic_ϵ start_POSTSUBSCRIPT roman_max , italic_T end_POSTSUBSCRIPT ≤ italic_ϵ, we get

Pr[(o)>ϵ]Pr𝑜italic-ϵ\displaystyle\Pr[\mathcal{L}(o)>\epsilon]roman_Pr [ caligraphic_L ( italic_o ) > italic_ϵ ] Pr[i=1t1ϵpost,i(oi)+logPr[MT(D;o1:T1)=oT]Pr[MT(D;o1:T1)=oT]>ϵ]<δ.absentPrsuperscriptsubscript𝑖1𝑡1subscriptitalic-ϵpost𝑖subscript𝑜𝑖Prsubscript𝑀𝑇𝐷subscript𝑜:1𝑇1subscript𝑜𝑇Prsubscript𝑀𝑇superscript𝐷subscript𝑜:1𝑇1subscript𝑜𝑇italic-ϵ𝛿\displaystyle\leq\Pr\left[\sum_{i=1}^{t-1}\epsilon_{\text{post},i}(o_{i})+\log% \frac{\Pr[M_{T}(D;o_{1:T-1})=o_{T}]}{\Pr[M_{T}(D^{\prime};o_{1:T-1})=o_{T}]}>% \epsilon\right]<\delta\enspace.≤ roman_Pr [ ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t - 1 end_POSTSUPERSCRIPT italic_ϵ start_POSTSUBSCRIPT post , italic_i end_POSTSUBSCRIPT ( italic_o start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) + roman_log divide start_ARG roman_Pr [ italic_M start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_D ; italic_o start_POSTSUBSCRIPT 1 : italic_T - 1 end_POSTSUBSCRIPT ) = italic_o start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ] end_ARG start_ARG roman_Pr [ italic_M start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( italic_D start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ; italic_o start_POSTSUBSCRIPT 1 : italic_T - 1 end_POSTSUBSCRIPT ) = italic_o start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ] end_ARG > italic_ϵ ] < italic_δ .

Appendix B PURE DP OFFLINE SELECTION MECHANISMS

In Fig. 6 we illustrate the variance observed when taking a Monte-Carlo estimate over a range of values σ𝜎\sigmaitalic_σ when computing our Pure DP Gaussian Report Noisy Max bound.

Refer to caption
Figure 6: Comparison of numerical integration (in green) and Monte Carlo estimation (in beige, with 100 trials, each with 10B samples) are reported. Note Monte Carlo sampling methods are much slower than numerical methods and require greater numbers of samples as the dimension increases. We observe higher variance in the privacy loss estimate as dimension increases. The shaded region represents the standard deviation.

B.1 Numerical evaluation compared to post-processing bounds

We study how privacy loss changes as noise (and privacy) are increased in Fig. 7 for Gaussian Report Noisy Max. The standard deviation of the query noise, σ𝜎\sigmaitalic_σ, and the number of queries (dimension d𝑑ditalic_d) on the privacy loss estimate. We note a slow increase in the privacy loss as the number of queries increases, in particular when compared to the ex-ante analysis with Δq=ΔdsubscriptΔ𝑞Δ𝑑\Delta_{q}=\Delta\sqrt{d}roman_Δ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT = roman_Δ square-root start_ARG italic_d end_ARG.

Refer to caption
Figure 7: Left: numerical evaluation of the privacy loss for Gaussian Report Noisy Max. Privacy loss increase is very slowly as the number of queries increases. Right: we calculate privacy loss with a classic (ϵ,δ)italic-ϵ𝛿(\epsilon,\delta)( italic_ϵ , italic_δ ) post-processing bound.

B.2 Where pure DP offers tighter accounting for Report Noisy Max

To assess whether there are any utility gains from performing a numerical evaluation of the privacy loss, we produce a heatmap of the difference reported between the standard post-processing bound under RDP and our method in Fig. 8. There exists a smooth region where the privacy accounting difference is significant, particularly in the the high privacy, high query setting. As the queries become less sensitive (Δ0Δ0\Delta\to 0roman_Δ → 0), this region becomes more pronounced.

Refer to caption
Figure 8: Comparison of the reported privacy loss difference between the standard Gaussian Report Noisy Max analysis and an ex-post evaluation for different levels of privacy (σ𝜎\sigmaitalic_σ) and number of queries (d𝑑ditalic_d). For large d𝑑ditalic_d and small σ𝜎\sigmaitalic_σ, we observe the greatest difference in reported privacy loss.

B.3 Offline Selection with Gaussian Report Noisy Max

Each accuracy/privacy loss plot reports the mean value over 1,000 trials, with the shaded region covering the standard error.

In our experiments, we normalize the dataset to values between zero and one. The shaded region represents the standard error across several runs. The mean value is represented in as a line. A classic example of this sort of problem is query selection over a long time horizon. Our experiments center on energy and mobility datasets, which have been known to leak privacy (Narayanan and Shmatikov,, 2008). In both instances, user behavior, such as whether power consumption deviates from historical levels, can be joined with other datasets to infer changes to a person’s socio-economic situation.

Dataset Pre-Processing

The datasets we consider are temporal event logs over a fixed period of time with a regular reporting interval (e.g. hour, day, month). In each instance, we re-scale the reported values to be between zero and one. These transformations do not affects the task result since we are interesting in reporting a discrete value. In the offline selection task, we wish to find the time step whose reported value is largest, and in the online selection task, the goal is to produce a binary vector indicating which step exceeds a fixed threshold.

Utility

We measure the accuracy of Gaussian Report Noisy Max by comparing the distance between the true answer and the noisy (private) answer step. Let qi*superscriptsubscript𝑞𝑖q_{i}^{*}italic_q start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT be the true query answer and q^isubscript^𝑞𝑖\hat{q}_{i}over^ start_ARG italic_q end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT be the answer selected by Report Noisy Max. Then accuracy AccσsubscriptAcc𝜎\text{Acc}_{\sigma}Acc start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT is defined as

Accσ(D)=1𝔼[|qi*(D)qi^(D)|qmax].subscriptAcc𝜎𝐷1𝔼delimited-[]subscript𝑞superscript𝑖𝐷subscript𝑞^𝑖𝐷subscript𝑞max\displaystyle\text{Acc}_{\sigma}(D)=1-\mathbb{E}\left[\frac{|q_{i^{*}}(D)-q_{% \hat{i}}(D)|}{q_{\text{max}}}\right]\enspace.Acc start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_D ) = 1 - blackboard_E [ divide start_ARG | italic_q start_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_D ) - italic_q start_POSTSUBSCRIPT over^ start_ARG italic_i end_ARG end_POSTSUBSCRIPT ( italic_D ) | end_ARG start_ARG italic_q start_POSTSUBSCRIPT max end_POSTSUBSCRIPT end_ARG ] . (39)

where qmaxsubscript𝑞maxq_{\text{max}}italic_q start_POSTSUBSCRIPT max end_POSTSUBSCRIPT is the maximum value of any query. In our experiments, qmax=1subscript𝑞max1q_{\text{max}}=1italic_q start_POSTSUBSCRIPT max end_POSTSUBSCRIPT = 1. In this construction, perfect utility occurs when Accσ(D)=1subscriptAcc𝜎𝐷1\text{Acc}_{\sigma}(D)=1Acc start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ( italic_D ) = 1. This is a reasonable measure of utility since we wish to measure how close on average we are to the max query value.

NEAR Energy Dataset.

The NEAR Energy Dataset (Ratnam et al.,, 2017) includes the annual energy consumption of 300 customers, we formulate the following question: Which day was consumption highest?

Refer to caption
Figure 9: Privacy / utility when performing Gaussian Report Noisy Max on a query over d=364𝑑364d=364italic_d = 364. 90%percent9090\%90 % Accuracy is attainable with our method whereas the same would only be possible with over double the privacy budget.

London Energy Dataset

Here we follow the same analysis as in the case of the NEAR dataset (Greater London Authority,, 2012), however the dataset comprises of N=5,564𝑁5564N=5,564italic_N = 5 , 564 customers over d=829𝑑829d=829italic_d = 829 days. The larger number of queries increases the privacy cost, however this is balanced by a decrease in individual contribution to each query due to each query having Δ=1/NΔ1𝑁\Delta=1/Nroman_Δ = 1 / italic_N.

Refer to caption
Figure 10: Privacy / utility when performing Gaussian Report Noisy Max on a query over d=829𝑑829d=829italic_d = 829 with the London Energy Dataset. As N𝑁Nitalic_N and d𝑑ditalic_d increase, the difference in reported privacy loss widens.
Refer to caption
Figure 11: Privacy / utility when performing Gaussian Report Noisy Max on a query over d=365𝑑365d=365italic_d = 365 with the London Energy Dataset.

We remark that there are other offline selection mechanisms that guarantee pure DP without Gaussian noise. The exponential mechanism, which calibrates an exponential distribution with respect to a utility function, is commonly used solution to the offline query selection problem (Dwork and Roth,, 2014). Despite a relatively simple implementation, the exponential mechanism requires that a sum over all query values be computed to fix the probability distribution. Permute-and-flip is a drop-in replacement for the exponential mechanism which has been shown to provide some utility benefits, but has the same calibration requirement (McKenna and Sheldon,, 2020). In both instances the global sensitivity is no longer dependent on the number of queries since the maximum contribution for each user is taken with respect to each query individually.

In Fig. 12 we measure compare our method to pure DP baselines with other noise distributions. The global sensitivity for these exponential-based mechanisms is Δ:=1/NassignΔ1𝑁\Delta:=1/Nroman_Δ := 1 / italic_N, where N𝑁Nitalic_N is the number of users, compared to our bound, which depends on d𝑑ditalic_d queries. One could make apply the same post-processing argument for Gaussian Report Noisy Max with noise drawn from the Laplace distribution however, this approach was omitted from our baselines since it did not appear competitive in our setting. Finally, we remark that our method may be easier to calibrate since each noisy query can be computed separately.

Refer to caption
(a) Comparison for d=364𝑑364d=364italic_d = 364 on the NEAR Dataset.
Refer to caption
(b) Comparison for d=365𝑑365d=365italic_d = 365 on the LCL Energy Dataset.
Figure 12: Comparison between our method and two classical offline selection mechanisms.

UCI Bikes Dataset

The UCI Bike Sharing Dataset captures the utilization of shared bikes in a geographic area over the course of a year (Fanaee-T and Gama,, 2013). We apply the same definition of accuracy and report on the day with peak consumption. Since we do not know the upper bound on registered customers, we take the maximum (6,946 users) and assume that this is a public value. We note that our analysis is still worst-case, in that a user is assumed to be contributing to each daily (normalized) count query. We limit our Report Noisy Max query to 365 days.

Refer to caption
Figure 13: Privacy / utility when performing Gaussian Report Noisy Max on a query over d=365𝑑365d=365italic_d = 365 with the UCI Bike Sharing Dataset.
Refer to caption
Figure 14: Privacy / utility when performing Gaussian Report Noisy Max on a query over d=90𝑑90d=90italic_d = 90 with the UCI Bike Sharing Dataset. Note that as the number of queries, d𝑑ditalic_d, decreases, baseline methods become more competitive.
Refer to caption
(a) Comparison for d=90𝑑90d=90italic_d = 90.
Refer to caption
(b) Comparison for d=365𝑑365d=365italic_d = 365.
Figure 15: Comparison between our method and two classical offline selection mechanisms.

As shown in Fig. 15, the Exponential Mechanism and Permute-and-flip offer a competitive baseline. Fig. 16 provides a comparison of our method with Laplace Report Noisy Max. We observe a clear improvement in the pure DP setting using Gaussian noise and our bounds.

Refer to caption
(a) Comparison for d=90𝑑90d=90italic_d = 90.
Refer to caption
(b) Comparison for d=365𝑑365d=365italic_d = 365.
Figure 16: Comparison between our method and the Laplace Report Noisy Max on the UCI Bike Sharing Dataset.

Appendix C COMPARISON WITH PRIVACY FILTERS

Our baseline for comparison are recent results by (Rogers et al.,, 2023), who propose a privacy filter which introduces an additive bound in both ϵitalic-ϵ\epsilonitalic_ϵ and δ𝛿\deltaitalic_δ, thereby creating a result similar to advanced composition. Their construction does not rely on computing some ϵmaxsubscriptitalic-ϵmax\epsilon_{\text{max}}italic_ϵ start_POSTSUBSCRIPT max end_POSTSUBSCRIPT.

Theorem 20 ((ϵ,δ)italic-ϵ𝛿(\epsilon,\delta)( italic_ϵ , italic_δ )-DP Filters (Whitehouse et al.,, 2023)).

Suppose (Mt)1subscript𝑀𝑡1(M_{t})\geq 1( italic_M start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) ≥ 1 is a sequence of mechanisms such that, for any t1𝑡1t\geq 1italic_t ≥ 1, Mtsubscript𝑀𝑡M_{t}italic_M start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is (ϵt,δt)subscriptitalic-ϵ𝑡subscript𝛿𝑡(\epsilon_{t},\delta_{t})( italic_ϵ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_δ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT )-differentially private conditioned on M1:t1subscript𝑀normal-:1𝑡1M_{1:t-1}italic_M start_POSTSUBSCRIPT 1 : italic_t - 1 end_POSTSUBSCRIPT. Let ϵ>0italic-ϵ0\epsilon>0italic_ϵ > 0, and δ=δ+δ′′𝛿superscript𝛿normal-′superscript𝛿normal-′′\delta=\delta^{\prime}+\delta^{\prime\prime}italic_δ = italic_δ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_δ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT be max privacy parameters s.t. δ>0,δ′′0formulae-sequencesuperscript𝛿normal-′0superscript𝛿normal-′′0\delta^{\prime}>0,\delta^{\prime\prime}\geq 0italic_δ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT > 0 , italic_δ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ≥ 0. Let the stopping time function N:0×0normal-:𝑁normal-→superscriptsubscriptabsent0superscriptsubscriptabsent0N:\mathbb{R}_{\geq 0}^{\infty}\times\mathbb{R}_{\geq 0}^{\infty}\to\mathbb{N}italic_N : blackboard_R start_POSTSUBSCRIPT ≥ 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT × blackboard_R start_POSTSUBSCRIPT ≥ 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT → blackboard_N be given by,

N((ϵt)t1,(δt)t1)𝑁subscriptsubscriptitalic-ϵ𝑡𝑡1subscriptsubscript𝛿𝑡𝑡1\displaystyle N((\epsilon_{t})_{t\geq 1},(\delta_{t})_{t\geq 1})italic_N ( ( italic_ϵ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t ≥ 1 end_POSTSUBSCRIPT , ( italic_δ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t ≥ 1 end_POSTSUBSCRIPT ) =inf{n:ϵ<2log(1δ)mt+1ϵm2+12mt+1ϵm2 or δ′′<mt+1δm}.absentinfimumconditional-set𝑛formulae-sequenceitalic-ϵ21superscript𝛿subscript𝑚𝑡1superscriptsubscriptitalic-ϵ𝑚212subscript𝑚𝑡1superscriptsubscriptitalic-ϵ𝑚2 or superscript𝛿′′subscript𝑚𝑡1subscript𝛿𝑚\displaystyle=\inf\left\{n:\epsilon<\sqrt{2\log\left(\frac{1}{\delta^{\prime}}% \right)\sum_{m\leq t+1}\epsilon_{m}^{2}}+\frac{1}{2}\sum_{m\leq t+1}\epsilon_{% m}^{2}\quad\text{ or }\quad\delta^{\prime\prime}<\sum_{m\leq t+1}\delta_{m}% \right\}\enspace.= roman_inf { italic_n : italic_ϵ < square-root start_ARG 2 roman_log ( divide start_ARG 1 end_ARG start_ARG italic_δ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG ) ∑ start_POSTSUBSCRIPT italic_m ≤ italic_t + 1 end_POSTSUBSCRIPT italic_ϵ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∑ start_POSTSUBSCRIPT italic_m ≤ italic_t + 1 end_POSTSUBSCRIPT italic_ϵ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT or italic_δ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT < ∑ start_POSTSUBSCRIPT italic_m ≤ italic_t + 1 end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT } . (40)

Then M1:N()():𝒳𝒪normal-:subscript𝑀normal-:1𝑁normal-⋅normal-⋅normal-→𝒳superscript𝒪M_{1:N(\cdot)}(\cdot):\mathcal{X}\to\mathcal{O}^{\infty}italic_M start_POSTSUBSCRIPT 1 : italic_N ( ⋅ ) end_POSTSUBSCRIPT ( ⋅ ) : caligraphic_X → caligraphic_O start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT is (ϵ,δ)italic-ϵ𝛿(\epsilon,\delta)( italic_ϵ , italic_δ )-DP.

To compare Filtered Self-Reporting Composition, we apply the following privacy filter, (Definition 21) with Algorithm 5. The bound we compute for Gaussian Above Threshold comes from (Zhu and Wang,, 2020).

Definition 21 (DP Privacy Filter (Rogers et al.,, 2016)).

Let N(,)𝑁N(\cdot,\cdot)italic_N ( ⋅ , ⋅ ) be a (ϵ,δ)italic-ϵ𝛿(\epsilon,\delta)( italic_ϵ , italic_δ )-DP Filter. Then the DP Composition Privacy Filter ()\cal{F}(\cdot)caligraphic_F ( ⋅ ) is given by

ϵ,δ((ϵt)t1,(δt)t1)subscriptitalic-ϵ𝛿subscriptsubscriptitalic-ϵ𝑡𝑡1subscriptsubscript𝛿𝑡𝑡1\displaystyle\mathcal{F}_{\epsilon,\delta}((\epsilon_{t})_{t\geq 1},(\delta_{t% })_{t\geq 1})caligraphic_F start_POSTSUBSCRIPT italic_ϵ , italic_δ end_POSTSUBSCRIPT ( ( italic_ϵ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t ≥ 1 end_POSTSUBSCRIPT , ( italic_δ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t ≥ 1 end_POSTSUBSCRIPT ) ={HALT if N((ϵt)t1,(δt)t1)>tCONT. otherwise .absentcasesHALT if 𝑁subscriptsubscriptitalic-ϵ𝑡𝑡1subscriptsubscript𝛿𝑡𝑡1𝑡CONT. otherwise \displaystyle=\begin{cases}\text{HALT}&\text{ if }N((\epsilon_{t})_{t\geq 1},(% \delta_{t})_{t\geq 1})>t\\ \text{CONT.}&\text{ otherwise }\end{cases}\enspace.= { start_ROW start_CELL HALT end_CELL start_CELL if italic_N ( ( italic_ϵ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t ≥ 1 end_POSTSUBSCRIPT , ( italic_δ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t ≥ 1 end_POSTSUBSCRIPT ) > italic_t end_CELL end_ROW start_ROW start_CELL CONT. end_CELL start_CELL otherwise end_CELL end_ROW . (41)
input : Dataset D𝐷Ditalic_D, Privacy budget ϵmaxsubscriptitalic-ϵmax\epsilon_{\text{max}}italic_ϵ start_POSTSUBSCRIPT max end_POSTSUBSCRIPT, δmaxsubscript𝛿max\delta_{\text{max}}italic_δ start_POSTSUBSCRIPT max end_POSTSUBSCRIPT, (ϵt,δt)subscriptitalic-ϵ𝑡subscript𝛿𝑡(\epsilon_{t},\delta_{t})( italic_ϵ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , italic_δ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT )-differentially private mechanisms Mtsubscript𝑀𝑡M_{t}italic_M start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT, for t=1,,T𝑡1𝑇t=1,\ldots,Titalic_t = 1 , … , italic_T, Privacy Filter ϵ,δsubscriptitalic-ϵ𝛿\cal{F}_{\epsilon,\delta}caligraphic_F start_POSTSUBSCRIPT italic_ϵ , italic_δ end_POSTSUBSCRIPT.
for t=1,,T𝑡1normal-…𝑇t=1,\ldots,Titalic_t = 1 , … , italic_T do
       ot=Mt(D)subscript𝑜𝑡subscript𝑀𝑡𝐷o_{t}=M_{t}(D)italic_o start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_M start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_D ) if ϵmax,δmax((ϵt)t1,(δ)t1)=𝐻𝐴𝐿𝑇subscriptsubscriptitalic-ϵmaxsubscript𝛿maxsubscriptsubscriptitalic-ϵ𝑡𝑡1subscript𝛿𝑡1𝐻𝐴𝐿𝑇{\cal{F}}_{\epsilon_{\text{max}},\delta_{\text{max}}}((\epsilon_{t})_{t\geq 1}% ,(\delta)_{t\geq 1})=\text{HALT}caligraphic_F start_POSTSUBSCRIPT italic_ϵ start_POSTSUBSCRIPT max end_POSTSUBSCRIPT , italic_δ start_POSTSUBSCRIPT max end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( ( italic_ϵ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_t ≥ 1 end_POSTSUBSCRIPT , ( italic_δ ) start_POSTSUBSCRIPT italic_t ≥ 1 end_POSTSUBSCRIPT ) = HALT then
             vt=subscript𝑣𝑡bottomv_{t}=\botitalic_v start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ⊥
       else
             vt=otsubscript𝑣𝑡subscript𝑜𝑡v_{t}=o_{t}italic_v start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_o start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT
       end if
      
end for
return (v1,,vT)subscript𝑣1normal-…subscript𝑣𝑇(v_{1},\ldots,v_{T})( italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_v start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT )
Algorithm 5 Composition with Privacy Filter

Appendix D PURE DP ONLINE SELECTION: ADDITIONAL EXPERIMENTS

UCI Bikes Dataset

We use the same UCI dataset as before, however this time configure Above Threshold to HALT when bike sharing exceeds a certain threshold between zero and one. In Fig. 17 we plot a range of calibrations, and in Fig. 18 we show the privacy spend over time.

Refer to caption
Figure 17: Scatter plot indicating the accuracy and final privacy spend over a range of noise multipliers for thresholds with the UCI Bikes dataset. Final privacy loss (ϵitalic-ϵ\epsilonitalic_ϵ) is reported for Filtered Self-Reporting Composition (green). Threshold noise, σXsubscript𝜎𝑋\sigma_{X}italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT, evaluated in the range of [0.09,0.15]0.090.15[0.09,0.15][ 0.09 , 0.15 ]. We note a clear separation in privacy accounting over a range of noise multipliers.
Refer to caption
Figure 18: Privacy spend comparison between Gaussian Above Threshold and Filtered Self-Reporting Composition and Privacy Filters with Gaussian Above Threshold on the UCI Bikes dataset.

London Energy Dataset.

We plot Gaussian Above Threshold under the same utility metric on the LCL London energy dataset, with 5,564 customers. In Fig. 19 we plot a range of calibrations. As the threshold decreases, we witness more queries released and therefore a greater privacy spend. we show the effect over time in Fig. 20.

Refer to caption
Figure 19: Scatter plot indicating the accuracy and final privacy spend over a range of noise multipliers for thresholds with the LCL London dataset. Final privacy loss (ϵitalic-ϵ\epsilonitalic_ϵ) is reported for FSRC (green). Threshold noise, σXsubscript𝜎𝑋\sigma_{X}italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT, was evaluated in the range of [0.04,0.16]0.040.16[0.04,0.16][ 0.04 , 0.16 ]. With this dataset, our accounting method provides benefits when σX>0.06subscript𝜎𝑋0.06\sigma_{X}>0.06italic_σ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT > 0.06.
Refer to caption
Figure 20: Privacy spend comparison between Gaussian Above Threshold and FSRC and Privacy Filters with Gaussian Above Threshold on the LCL London Energy dataset.