Mathematics > Probability
[Submitted on 13 Nov 2025]
Title:Diffusion annealed Langevin dynamics: a theoretical study
View PDF HTML (experimental)Abstract:In this work we study the diffusion annealed Langevin dynamics, a score-based diffusion process recently introduced in the theory of generative models and which is an alternative to the classical overdamped Langevin diffusion. Our goal is to provide a rigorous construction and to study the theoretical efficiency of these models for general base distribution as well as target distribution. As a matter of fact these diffusion processes are a particular case of Nelson processes i.e. diffusion processes with a given flow of time marginals.
Providing existence and uniqueness of the solution to the annealed Langevin diffusion leads to proving a Poincaré inequality for the conditional distribution of $X$ knowing $X+Z=y$ uniformly in $y$, as recently observed by one of us and her coauthors. Part of this work is thus devoted to the study of such Poincaré inequalities. Additionally we show that strengthening the Poincaré inequality into a logarithmic Sobolev inequality improves the efficiency of the model.
Submission history
From: Paula Cordero Encinar [view email][v1] Thu, 13 Nov 2025 15:26:42 UTC (100 KB)
Current browse context:
math.PR
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.