Statistics > Methodology
[Submitted on 12 Nov 2025]
Title:Distributional Treatment Effect Estimation across Heterogeneous Sites via Optimal Transport
View PDF HTML (experimental)Abstract:We propose a novel framework for synthesizing counterfactual treatment group data in a target site by integrating full treatment and control group data from a source site with control group data from the target. Departing from conventional average treatment effect estimation, our approach adopts a distributional causal inference perspective by modeling treatment and control as distinct probability measures on the source and target sites. We formalize the cross-site heterogeneity (effect modification) as a push-forward transformation that maps the joint feature-outcome distribution from the source to the target site. This transformation is learned by aligning the control group distributions between sites using an Optimal Transport-based procedure, and subsequently applied to the source treatment group to generate the synthetic target treatment distribution. Under general regularity conditions, we establish theoretical guarantees for the consistency and asymptotic convergence of the synthetic treatment group data to the true target distribution. Simulation studies across multiple data-generating scenarios and a real-world application to patient-derived xenograft data demonstrate that our framework robustly recovers the full distributional properties of treatment effects.
Current browse context:
stat.ME
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.