Computer Science > Human-Computer Interaction
[Submitted on 12 Nov 2025]
Title:Algorithmic Advice as a Strategic Signal on Competitive Markets
View PDFAbstract:As algorithms increasingly mediate competitive decision-making, their influence extends beyond individual outcomes to shaping strategic market dynamics. In two preregistered experiments, we examined how algorithmic advice affects human behavior in classic economic games with unique, non-collusive, and analytically traceable equilibria. In Experiment 1 (N = 107), participants played a Bertrand price competition with individualized or collective algorithmic recommendations. Initially, collusively upward-biased advice increased prices, particularly when individualized, but prices gradually converged toward equilibrium over the course of the experiment. However, participants avoided setting prices above the algorithm's recommendation throughout the experiment, suggesting that advice served as a soft upper bound for acceptable prices. In Experiment 2 (N = 129), participants played a Cournot quantity competition with equilibrium-aligned or strategically biased algorithmic recommendations. Here, individualized equilibrium advice supported stable convergence, whereas collusively downward-biased advice led to sustained underproduction and supracompetitive profits - hallmarks of tacit collusion. In both experiments, participants responded more strongly and consistently to individualized advice than collective advice, potentially due to greater perceived ownership of the former. These findings demonstrate that algorithmic advice can function as a strategic signal, shaping coordination even without explicit communication. The results echo real-world concerns about algorithmic collusion and underscore the need for careful design and oversight of algorithmic decision-support systems in competitive environments.
Current browse context:
cs.HC
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.