Statistics > Machine Learning
[Submitted on 11 Nov 2025]
Title:Source-Optimal Training is Transfer-Suboptimal
View PDF HTML (experimental)Abstract:We prove a fundamental misalignment in transfer learning: the source regularization that minimizes source risk almost never coincides with the regularization maximizing transfer benefit. Through sharp phase boundaries for L2-SP ridge regression, we characterize the transfer-optimal source penalty $\tau_0^*$ and show it diverges predictably from task-optimal values, requiring stronger regularization in high-SNR regimes and weaker regularization in low-SNR regimes. Additionally, in isotropic settings the decision to transfer is remarkably independent of target sample size and noise, depending only on task alignment and source characteristics. CIFAR-10 and MNIST experiments confirm this counterintuitive pattern persists in non-linear networks.
Current browse context:
stat.ML
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.