Mathematics > Probability
[Submitted on 11 Nov 2025]
Title:On the Kantorovich contraction of Markov semigroups
View PDF HTML (experimental)Abstract:This paper develops a novel operator theoretic framework to study the contraction properties of Markov semigroups with respect to a general class of Kantorovich semi-distances, which notably includes Wasserstein distances. The rather simple contraction cost framework developed in this article, which combines standard Lyapunov techniques with local contraction conditions, helps to unifying and simplifying many arguments in the stability of Markov semigroups, as well as to improve upon some existing results. Our results can be applied to both discrete time and continuous time Markov semigroups, and we illustrate their wide applicability in the context of (i) Markov transitions on models with boundary states, including bounded domains with entrance boundaries, (ii) operator products of a Markov kernel and its adjoint, including two-block-type Gibbs samplers, (iii) iterated random functions and (iv) diffusion models, including overdampted Langevin diffusion with convex at infinity potentials.
Current browse context:
math.PR
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.