Mathematics > Statistics Theory
[Submitted on 10 Nov 2025]
Title:Confidence Intervals for Linear Models with Arbitrary Noise Contamination
View PDF HTML (experimental)Abstract:We study confidence interval construction for linear regression under Huber's contamination model, where an unknown fraction of noise variables is arbitrarily corrupted. While robust point estimation in this setting is well understood, statistical inference remains challenging, especially because the contamination proportion is not identifiable from the data. We develop a new algorithm that constructs confidence intervals for individual regression coefficients without any prior knowledge of the contamination level. Our method is based on a Z-estimation framework using a smooth estimating function. The method directly quantifies the uncertainty of the estimating equation after a preprocessing step that decorrelates covariates associated with the nuisance parameters. We show that the resulting confidence interval has valid coverage uniformly over all contamination distributions and attains an optimal length of order $O(1/\sqrt{n(1-\epsilon)^2})$, matching the rate achievable when the contamination proportion $\epsilon$ is known. This result stands in sharp contrast to the adaptation cost of robust interval estimation observed in the simpler Gaussian location model.
Current browse context:
math.ST
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.