Condensed Matter > Other Condensed Matter
[Submitted on 5 Sep 2025 (v1), last revised 8 Sep 2025 (this version, v2)]
Title:Exchange spin-wave propagation in Ga:YIG nanowaveguides
View PDF HTML (experimental)Abstract:Spin-wave-based computing has emerged as a promising approach to overcome the fundamental limitations of CMOS technologies. However, the increasing demand for device miniaturization down to a 100 nm scale presents significant challenges for long-distance spin-wave transport. Gallium-substituted yttrium iron garnet (Ga:YIG) offers a potential solution to these challenges due to its unique magnetic properties. The reduced saturation magnetization in Ga:YIG enables efficient excitation of exchange-dominated spin waves, which exhibit enhanced transport characteristics compared to dipolar-dominated modes in conventional materials. Here, we present the first comprehensive study combining experimental, analytical, and numerical investigations of spin-wave propagation in Ga:YIG waveguides down to 145 nm width and 73 nm thickness. Using micro-focused Brillouin light scattering spectroscopy, TetraX simulations, and analytical dispersion calculations, we demonstrate that Ga:YIG waveguides support spin waves with significantly higher group velocities up to 600 m/s. This value remains constant for structures with different widths, leading to longer spin-wave propagation lengths in nanowaveguides compared to non-substituted YIG. These results reveal that gallium substitution provides access to faster and longer-lived spin waves, opening new possibilities for implementing this material in nanoscale magnonic devices.
Submission history
From: Andrey Voronov [view email][v1] Fri, 5 Sep 2025 12:31:23 UTC (2,075 KB)
[v2] Mon, 8 Sep 2025 10:16:19 UTC (2,082 KB)
Current browse context:
cond-mat.other
Change to browse by:
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.