Physics > Fluid Dynamics
[Submitted on 19 Mar 2025 (v1), last revised 23 May 2025 (this version, v2)]
Title:TripNet: Learning Large-scale High-fidelity 3D Car Aerodynamics with Triplane Networks
View PDF HTML (experimental)Abstract:Surrogate modeling has emerged as a powerful tool to accelerate Computational Fluid Dynamics (CFD) simulations. Existing 3D geometric learning models based on point clouds, voxels, meshes, or graphs depend on explicit geometric representations that are memory-intensive and resolution-limited. For large-scale simulations with millions of nodes and cells, existing models require aggressive downsampling due to their dependence on mesh resolution, resulting in degraded accuracy. We present TripNet, a triplane-based neural framework that implicitly encodes 3D geometry into a compact, continuous feature map with fixed dimension. Unlike mesh-dependent approaches, TripNet scales to high-resolution simulations without increasing memory cost, and enables CFD predictions at arbitrary spatial locations in a query-based fashion, independent of mesh connectivity or predefined nodes. TripNet achieves state-of-the-art performance on the DrivAerNet and DrivAerNet++ datasets, accurately predicting drag coefficients, surface pressure, and full 3D flow fields. With a unified triplane backbone supporting multiple simulation tasks, TripNet offers a scalable, accurate, and efficient alternative to traditional CFD solvers and existing surrogate models.
Submission history
From: Mohamed Elrefaie [view email][v1] Wed, 19 Mar 2025 17:30:57 UTC (28,576 KB)
[v2] Fri, 23 May 2025 14:28:05 UTC (38,746 KB)
Current browse context:
physics.flu-dyn
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.