Quantitative Biology > Quantitative Methods
[Submitted on 21 Jul 2025]
Title:A tissue and cell-level annotated H&E and PD-L1 histopathology image dataset in non-small cell lung cancer
View PDF HTML (experimental)Abstract:The tumor immune microenvironment (TIME) in non-small cell lung cancer (NSCLC) histopathology contains morphological and molecular characteristics predictive of immunotherapy response. Computational quantification of TIME characteristics, such as cell detection and tissue segmentation, can support biomarker development. However, currently available digital pathology datasets of NSCLC for the development of cell detection or tissue segmentation algorithms are limited in scope, lack annotations of clinically prevalent metastatic sites, and forgo molecular information such as PD-L1 immunohistochemistry (IHC). To fill this gap, we introduce the IGNITE data toolkit, a multi-stain, multi-centric, and multi-scanner dataset of annotated NSCLC whole-slide images. We publicly release 887 fully annotated regions of interest from 155 unique patients across three complementary tasks: (i) multi-class semantic segmentation of tissue compartments in H&E-stained slides, with 16 classes spanning primary and metastatic NSCLC, (ii) nuclei detection, and (iii) PD-L1 positive tumor cell detection in PD-L1 IHC slides. To the best of our knowledge, this is the first public NSCLC dataset with manual annotations of H&E in metastatic sites and PD-L1 IHC.
Submission history
From: Leander Van Eekelen [view email][v1] Mon, 21 Jul 2025 12:16:22 UTC (5,425 KB)
Current browse context:
q-bio.QM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.