Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Jul 2025]
Title:Coarse-to-fine crack cue for robust crack detection
View PDFAbstract:Crack detection is an important task in computer vision. Despite impressive in-dataset performance, deep learning-based methods still struggle in generalizing to unseen domains. The thin structure property of cracks is usually overlooked by previous methods. In this work, we introduce CrackCue, a novel method for robust crack detection based on coarse-to-fine crack cue generation. The core concept lies on leveraging the thin structure property to generate a robust crack cue, guiding the crack detection. Specifically, we first employ a simple max-pooling and upsampling operation on the crack image. This results in a coarse crack-free background, based on which a fine crack-free background can be obtained via a reconstruction network. The difference between the original image and fine crack-free background provides a fine crack cue. This fine cue embeds robust crack prior information which is unaffected by complex backgrounds, shadow, and varied lighting. As a plug-and-play method, we incorporate the proposed CrackCue into three advanced crack detection networks. Extensive experimental results demonstrate that the proposed CrackCue significantly improves the generalization ability and robustness of the baseline methods. The source code will be publicly available.
Submission history
From: Laurent Najman [view email] [via CCSD proxy][v1] Mon, 21 Jul 2025 08:36:05 UTC (2,751 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.