Computer Science > Cryptography and Security
[Submitted on 19 Jul 2025]
Title:CASPER: Contrastive Approach for Smart Ponzi Scheme Detecter with More Negative Samples
View PDF HTML (experimental)Abstract:The rapid evolution of digital currency trading, fueled by the integration of blockchain technology, has led to both innovation and the emergence of smart Ponzi schemes. A smart Ponzi scheme is a fraudulent investment operation in smart contract that uses funds from new investors to pay returns to earlier investors. Traditional Ponzi scheme detection methods based on deep learning typically rely on fully supervised models, which require large amounts of labeled data. However, such data is often scarce, hindering effective model training. To address this challenge, we propose a novel contrastive learning framework, CASPER (Contrastive Approach for Smart Ponzi detectER with more negative samples), designed to enhance smart Ponzi scheme detection in blockchain transactions. By leveraging contrastive learning techniques, CASPER can learn more effective representations of smart contract source code using unlabeled datasets, significantly reducing both operational costs and system complexity. We evaluate CASPER on the XBlock dataset, where it outperforms the baseline by 2.3% in F1 score when trained with 100% labeled data. More impressively, with only 25% labeled data, CASPER achieves an F1 score nearly 20% higher than the baseline under identical experimental conditions. These results highlight CASPER's potential for effective and cost-efficient detection of smart Ponzi schemes, paving the way for scalable fraud detection solutions in the future.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.