Computer Science > Computers and Society
[Submitted on 22 Jul 2025]
Title:Beyond Algorethics: Addressing the Ethical and Anthropological Challenges of AI Recommender Systems
View PDF HTML (experimental)Abstract:In this paper, I examine the ethical and anthropological challenges posed by AI-driven recommender systems (RSs), which have become central to shaping digital environments and social interactions. By curating personalized content, RSs do not merely reflect user preferences but actively construct individual experiences across social media, entertainment platforms, and e-commerce. Despite their ubiquity, the ethical implications of RSs remain insufficiently explored, even as concerns over privacy, autonomy, and mental well-being intensify. I argue that existing ethical approaches, including algorethics, the effort to embed ethical principles into algorithmic design, are necessary but ultimately inadequate. RSs inherently reduce human complexity to quantifiable dimensions, exploit user vulnerabilities, and prioritize engagement over well-being. Addressing these concerns requires moving beyond purely technical solutions. I propose a comprehensive framework for human-centered RS design, integrating interdisciplinary perspectives, regulatory strategies, and educational initiatives to ensure AI systems foster rather than undermine human autonomy and societal flourishing.
Submission history
From: Octavian M. Machidon [view email][v1] Tue, 22 Jul 2025 10:22:08 UTC (172 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.