Computer Science > Human-Computer Interaction
[Submitted on 22 Jul 2025]
Title:A Human-Centered Approach to Identifying Promises, Risks, & Challenges of Text-to-Image Generative AI in Radiology
View PDF HTML (experimental)Abstract:As text-to-image generative models rapidly improve, AI researchers are making significant advances in developing domain-specific models capable of generating complex medical imagery from text prompts. Despite this, these technical advancements have overlooked whether and how medical professionals would benefit from and use text-to-image generative AI (GenAI) in practice. By developing domain-specific GenAI without involving stakeholders, we risk the potential of building models that are either not useful or even more harmful than helpful. In this paper, we adopt a human-centered approach to responsible model development by involving stakeholders in evaluating and reflecting on the promises, risks, and challenges of a novel text-to-CT Scan GenAI model. Through exploratory model prompting activities, we uncover the perspectives of medical students, radiology trainees, and radiologists on the role that text-to-CT Scan GenAI can play across medical education, training, and practice. This human-centered approach additionally enabled us to surface technical challenges and domain-specific risks of generating synthetic medical images. We conclude by reflecting on the implications of medical text-to-image GenAI.
Submission history
From: Katelyn Morrison [view email][v1] Tue, 22 Jul 2025 03:53:25 UTC (3,459 KB)
Current browse context:
cs.HC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.