Computer Science > Computation and Language
[Submitted on 20 Jul 2025]
Title:Beyond Isolated Capabilities: Bridging Long CoT Reasoning and Long-Context Understanding
View PDF HTML (experimental)Abstract:Reasoning distillation has emerged as an effective approach to enhance the reasoning capabilities of smaller language models. However, the impact of large-scale reasoning distillation on other critical abilities, particularly in-context retrieval and reasoning, remains unexplored. This gap in understanding is particularly significant given the increasing importance of Retrieval-Augmented Generation (RAG) systems, where efficient acquisition and utilization of contextual information are paramount for generating reliable responses. Motivated by the need to understand how the extended long-CoT process influences long-context comprehension, we conduct a comprehensive investigation using a series of open-source models distilled from Deepseek-R1, renowned for its exceptional reasoning capabilities. Our study focuses on evaluating these models' performance in extracting and integrating relevant information from extended contexts through multi-document question and answering tasks. Through rigorous experimentation, we demonstrate that distilled reasoning patterns significantly improve long-context understanding. Our analysis reveals that distillation fosters greater long-context awareness by promoting more detailed and explicit reasoning processes during context analysis and information parsing. This advancement effectively mitigates the persistent "lost in the middle" issue that has hindered long-context models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.