Computer Science > Artificial Intelligence
[Submitted on 19 Jul 2025]
Title:What if Othello-Playing Language Models Could See?
View PDF HTML (experimental)Abstract:Language models are often said to face a symbol grounding problem. While some argue that world understanding can emerge from text alone, others suggest grounded learning is more efficient. We explore this through Othello, where the board state defines a simplified, rule-based world. Building on prior work, we introduce VISOTHELLO, a multi-modal model trained on move histories and board images. Using next-move prediction, we compare it to mono-modal baselines and test robustness to semantically irrelevant perturbations. We find that multi-modal training improves both performance and the robustness of internal representations. These results suggest that grounding language in visual input helps models infer structured world representations.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.