Computer Science > Machine Learning
[Submitted on 11 Jul 2025 (v1), last revised 14 Jul 2025 (this version, v2)]
Title:Two-cluster test
View PDF HTML (experimental)Abstract:Cluster analysis is a fundamental research issue in statistics and machine learning. In many modern clustering methods, we need to determine whether two subsets of samples come from the same cluster. Since these subsets are usually generated by certain clustering procedures, the deployment of classic two-sample tests in this context would yield extremely smaller p-values, leading to inflated Type-I error rate. To overcome this bias, we formally introduce the two-cluster test issue and argue that it is a totally different significance testing issue from conventional two-sample test. Meanwhile, we present a new method based on the boundary points between two subsets to derive an analytical p-value for the purpose of significance quantification. Experiments on both synthetic and real data sets show that the proposed test is able to significantly reduce the Type-I error rate, in comparison with several classic two-sample testing methods. More importantly, the practical usage of such two-cluster test is further verified through its applications in tree-based interpretable clustering and significance-based hierarchical clustering.
Submission history
From: Xinying Liu [view email][v1] Fri, 11 Jul 2025 07:54:16 UTC (1,069 KB)
[v2] Mon, 14 Jul 2025 06:58:33 UTC (1,068 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.