Computer Science > Software Engineering
[Submitted on 13 Nov 2024]
Title:CorrectBench: Automatic Testbench Generation with Functional Self-Correction using LLMs for HDL Design
View PDF HTML (experimental)Abstract:Functional simulation is an essential step in digital hardware design. Recently, there has been a growing interest in leveraging Large Language Models (LLMs) for hardware testbench generation tasks. However, the inherent instability associated with LLMs often leads to functional errors in the generated testbenches. Previous methods do not incorporate automatic functional correction mechanisms without human intervention and still suffer from low success rates, especially for sequential tasks. To address this issue, we propose CorrectBench, an automatic testbench generation framework with functional self-validation and self-correction. Utilizing only the RTL specification in natural language, the proposed approach can validate the correctness of the generated testbenches with a success rate of 88.85%. Furthermore, the proposed LLM-based corrector employs bug information obtained during the self-validation process to perform functional self-correction on the generated testbenches. The comparative analysis demonstrates that our method achieves a pass ratio of 70.13% across all evaluated tasks, compared with the previous LLM-based testbench generation framework's 52.18% and a direct LLM-based generation method's 33.33%. Specifically in sequential circuits, our work's performance is 62.18% higher than previous work in sequential tasks and almost 5 times the pass ratio of the direct method. The codes and experimental results are open-sourced at the link: this https URL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.