Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Sep 2024 (v1), last revised 23 Jul 2025 (this version, v2)]
Title:Cross-domain Multi-step Thinking: Zero-shot Fine-grained Traffic Sign Recognition in the Wild
View PDF HTML (experimental)Abstract:In this study, we propose Cross-domain Multi-step Thinking (CdMT) to improve zero-shot fine-grained traffic sign recognition (TSR) performance in the wild. Zero-shot fine-grained TSR in the wild is challenging due to the cross-domain problem between clean template traffic signs and real-world counterparts, and existing approaches particularly struggle with cross-country TSR scenarios, where traffic signs typically differ between countries. The proposed CdMT framework tackles these challenges by leveraging the multi-step reasoning capabilities of large multimodal models (LMMs). We introduce context, characteristic, and differential descriptions to design multiple thinking processes for LMMs. Context descriptions, which are enhanced by center coordinate prompt optimization, enable the precise localization of target traffic signs in complex road images and filter irrelevant responses via novel prior traffic sign hypotheses. Characteristic descriptions, which are derived from in-context learning with template traffic signs, bridge cross-domain gaps and enhance fine-grained TSR. Differential descriptions refine the multimodal reasoning ability of LMMs by distinguishing subtle differences among similar signs. CdMT is independent of training data and requires only simple and uniform instructions, enabling it to achieve cross-country TSR. We conducted extensive experiments on three benchmark datasets and two real-world datasets from different countries. The proposed CdMT framework achieved superior performance compared with other state-of-the-art methods on all five datasets, with recognition accuracies of 0.93, 0.89, 0.97, 0.89, and 0.85 on the GTSRB, BTSD, TT-100K, Sapporo, and Yokohama datasets, respectively.
Submission history
From: Yaozong Gan [view email][v1] Tue, 3 Sep 2024 02:08:47 UTC (5,720 KB)
[v2] Wed, 23 Jul 2025 08:14:06 UTC (5,405 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.