Computer Science > Software Engineering
[Submitted on 27 Aug 2024]
Title:Strategic Optimization and Challenges of Large Language Models in Object-Oriented Programming
View PDF HTML (experimental)Abstract:In the area of code generation research, the emphasis has transitioned from crafting individual functions to developing class-level method code that integrates contextual information. This shift has brought several benchmarks such as ClassEval and CoderEval, which consider class-level contexts. Nevertheless, the influence of specific contextual factors at the method level remains less explored.
This research focused on method-level code generation within the Object-Oriented Programming (OOP) framework. Based on CoderEval, we devised experiments that varied the extent of contextual information in the prompts, ranging from method-specific to project-wide details. We introduced the innovative metric of "Prompt-Token Cost-Effectiveness" to evaluate the economic viability of incorporating additional contextual layers. Our findings indicate that prompts enriched with method invocation details yield the highest cost-effectiveness. Additionally, our study revealed disparities among Large Language Models (LLMs) regarding error type distributions and the level of assistance they provide to developers. Notably, larger LLMs do not invariably perform better. We also observed that tasks with higher degrees of coupling present more substantial challenges, suggesting that the choice of LLM should be tailored to the task's coupling degree. For example, GPT-4 exhibited improved performance in low-coupling scenarios, whereas GPT-3.5 seemed better suited for tasks with high coupling. By meticulously curating prompt content and selecting the appropriate LLM, developers can optimize code quality while maximizing cost-efficiency during the development process.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.