Computer Science > Software Engineering
[Submitted on 19 Aug 2024]
Title:Impact of Large Language Models of Code on Fault Localization
View PDF HTML (experimental)Abstract:Identifying the point of error is imperative in software debugging. Traditional fault localization (FL) techniques rely on executing the program and using the code coverage matrix in tandem with test case results to calculate a suspiciousness score for each function or line. Recently, learning-based FL techniques have harnessed machine learning models to extract meaningful features from the code coverage matrix and improve FL performance. These techniques, however, require compilable source code, existing test cases, and specialized tools for generating the code coverage matrix for each programming language of interest.
In this paper, we propose, for the first time, a simple but effective sequence generation approach for fine-tuning large language models of code (LLMCs) for FL tasks. LLMCs have recently received much attention for various software engineering problems. In line with these, we leverage the innate understanding of code that LLMCs have acquired through pre-training on large code corpora. Specifically, we fine-tune representative encoder, encoder-decoder, and decoder-based 13 LLMCs for FL tasks. Unlike previous approaches, LLMCs can analyze code sequences even with syntactic errors, since they do not rely on compiled input. Still, they have a limitation on the length of the input data. Therefore, for a fair comparison with existing FL techniques, we extract methods with errors from the project-level benchmark, Defects4J, and analyze them at the line level. Experimental results show that LLMCs fine-tuned with our approach successfully pinpoint error positions in 50.6\%, 64.2\%, and 72.3\% of 1,291 methods in Defects4J for Top-1/3/5 prediction, outperforming the best learning-based state-of-the-art technique by up to 1.35, 1.12, and 1.08 times, respectively. Our findings suggest promising research directions for FL and automated program repair tasks using LLMCs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.