Computer Science > Machine Learning
[Submitted on 16 Aug 2024]
Title:Speckle Noise Analysis for Synthetic Aperture Radar (SAR) Space Data
View PDFAbstract:This research tackles the challenge of speckle noise in Synthetic Aperture Radar (SAR) space data, a prevalent issue that hampers the clarity and utility of SAR images. The study presents a comparative analysis of six distinct speckle noise reduction techniques: Lee Filtering, Frost Filtering, Kuan Filtering, Gaussian Filtering, Median Filtering, and Bilateral Filtering. These methods, selected for their unique approaches to noise reduction and image preservation, were applied to SAR datasets sourced from the Alaska Satellite Facility (ASF). The performance of each technique was evaluated using a comprehensive set of metrics, including Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), Structural Similarity Index (SSIM), Equivalent Number of Looks (ENL), and Speckle Suppression Index (SSI). The study concludes that both the Lee and Kuan Filters are effective, with the choice of filter depending on the specific application requirements for image quality and noise suppression. This work provides valuable insights into optimizing SAR image processing, with significant implications for remote sensing, environmental monitoring, and geological surveying.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.