Computer Science > Data Structures and Algorithms
[Submitted on 15 Aug 2024 (v1), last revised 28 Jan 2025 (this version, v3)]
Title:Coupling without Communication and Drafter-Invariant Speculative Decoding
View PDF HTML (experimental)Abstract:Suppose Alice has a distribution $P$ and Bob has a distribution $Q$. Alice wants to draw a sample $a\sim P$ and Bob a sample $b \sim Q$ such that $a = b$ with as high of probability as possible. It is well-known that, by sampling from an optimal coupling between the distributions, Alice and Bob can achieve $\Pr[a = b] = 1 - D_{TV}(P,Q)$, where $D_{TV}(P,Q)$ is the total variation distance between $P$ and $Q$. What if Alice and Bob must solve this same problem \emph{without communicating at all?} Perhaps surprisingly, with access to public randomness, they can still achieve $\Pr[a = b] \geq \frac{1 - D_{TV}(P,Q)}{1 + D_{TV}(P,Q)} \geq 1-2D_{TV}(P,Q)$ using a simple protocol based on the Weighted MinHash algorithm. This bound was shown to be optimal in the worst-case by [Bavarian et al., 2020]. In this work, we revisit the communication-free coupling problem. We provide a simpler proof of the optimality result from [Bavarian et al., 2020]. We show that, while the worst-case success probability of Weighted MinHash cannot be improved, an equally simple protocol based on Gumbel sampling offers a Pareto improvement: for every pair of distributions $P, Q$, Gumbel sampling achieves an equal or higher value of $\Pr[a = b]$ than Weighted MinHash. Importantly, this improvement translates to practice. We demonstrate an application of communication-free coupling to \emph{speculative decoding}, a recent method for accelerating autoregressive large language models [Leviathan, Kalman, Matias, ICML 2023]. We show that communication-free protocols can be used to contruct \emph{\CSD{}} schemes, which have the desirable property that their output is fixed given a fixed random seed, regardless of what drafter is used for speculation. In experiments on a language generation task, Gumbel sampling outperforms Weighted MinHash. Code is available at this https URL.
Submission history
From: Majid Daliri [view email][v1] Thu, 15 Aug 2024 06:52:24 UTC (401 KB)
[v2] Mon, 19 Aug 2024 05:04:38 UTC (561 KB)
[v3] Tue, 28 Jan 2025 18:23:59 UTC (3,903 KB)
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.