Computer Science > Computation and Language
[Submitted on 14 Aug 2024 (v1), last revised 18 Aug 2024 (this version, v2)]
Title:The Death of Schema Linking? Text-to-SQL in the Age of Well-Reasoned Language Models
View PDF HTML (experimental)Abstract:Schema linking is a crucial step in Text-to-SQL pipelines. Its goal is to retrieve the relevant tables and columns of a target database for a user's query while disregarding irrelevant ones. However, imperfect schema linking can often exclude required columns needed for accurate query generation. In this work, we revisit schema linking when using the latest generation of large language models (LLMs). We find empirically that newer models are adept at utilizing relevant schema elements during generation even in the presence of large numbers of irrelevant ones. As such, our Text-to-SQL pipeline entirely forgoes schema linking in cases where the schema fits within the model's context window in order to minimize issues due to filtering required schema elements. Furthermore, instead of filtering contextual information, we highlight techniques such as augmentation, selection, and correction, and adopt them to improve the accuracy of our Text-to-SQL pipeline. Our approach ranks first on the BIRD benchmark achieving an accuracy of 71.83%.
Submission history
From: Karime Maamari [view email][v1] Wed, 14 Aug 2024 17:59:04 UTC (939 KB)
[v2] Sun, 18 Aug 2024 19:06:04 UTC (1,116 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.