Nuclear Theory
[Submitted on 17 Apr 2024]
Title:Momentum dependent nucleon-nucleon contact interactions and their effect on p-d scattering observables
View PDF HTML (experimental)Abstract:Starting from a complete set of relativistic nucleon-nucleon contact operators up to order $O(p^4)$ of the expansion in the soft (relative or nucleon) momentum $p$, we show that non-relativistic expansions of relativistic operators involve twenty-six independent combinations, two starting at $O(p^0)$, seven at order $O(p^2)$ and seventeen at order $O(p^4)$. This demonstrates the existence of two low-energy free constants that parameterize interactions dependent on the total momentum of the pair of nucleons $P$. The latter, through the use of a unitary transformation, can be removed in the two-nucleon fourth-order contact interaction of the Chiral Effective Field Theory, generating a three-nucleon interaction at the same order. Within a hybrid approach in which this interaction is considered together with the phenomenological potential AV18, we show that the LECs involved can be used to fit very accurate data on the polarization observables of the low-energy $p-d$ scattering, in particular the $A_y$ asymmetry.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.