Computer Science > Software Engineering
[Submitted on 17 Apr 2024 (v1), last revised 12 Jun 2025 (this version, v2)]
Title:An Empirical Evaluation of Pre-trained Large Language Models for Repairing Declarative Formal Specifications
View PDF HTML (experimental)Abstract:Automatic Program Repair (APR) has garnered significant attention as a practical research domain focused on automatically fixing bugs in programs. While existing APR techniques primarily target imperative programming languages like C and Java, there is a growing need for effective solutions applicable to declarative software specification languages. This paper systematically investigates the capacity of Large Language Models (LLMs) to repair declarative specifications in Alloy, a declarative formal language used for software specification. We designed 12 different repair settings, encompassing single-agent and dual-agent paradigms, utilizing various LLMs. These configurations also incorporate different levels of feedback, including an auto-prompting mechanism for generating prompts autonomously using LLMs. Our study reveals that dual-agent with auto-prompting setup outperforms the other settings, albeit with a marginal increase in the number of iterations and token usage. This dual-agent setup demonstrated superior effectiveness compared to state-of-the-art Alloy APR techniques when evaluated on a comprehensive set of benchmarks. This work is the first to empirically evaluate LLM capabilities to repair declarative specifications, while taking into account recent trending LLM concepts such as LLM-based agents, feedback, auto-prompting, and tools, thus paving the way for future agent-based techniques in software engineering.
Submission history
From: Mohannad Alhanahnah [view email][v1] Wed, 17 Apr 2024 03:46:38 UTC (439 KB)
[v2] Thu, 12 Jun 2025 14:28:03 UTC (694 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.