Computer Science > Computers and Society
[Submitted on 29 Jun 2024]
Title:Influence of Personality Traits on Plagiarism Through Collusion in Programming Assignments
View PDF HTML (experimental)Abstract:Educating students about academic integrity expectations has been suggested as one of the ways to reduce malpractice in take-home programming assignments. We test this hypothesis using data collected from an artificial intelligence course with 105 participants (N=105) at a university in India. The AI course had two programming assignments. Plagiarism through collusion was quantified using the Measure of Software Similarity (MOSS) tool. Students were educated about what constitutes academic dishonesty and were required to take an honor pledge before the start of the second take-home programming assignment. The two programming assignments were novel and did not have solutions available on the internet. We expected the mean percentage of similar lines of code to be significantly less in the second programming assignment. However, our results show no significant difference in the mean percentage of similar lines of code across the two programming assignments. We also study how the Big-five personality traits affect the propensity for plagiarism in the two take-home assignments. Our results across both assignments show that the extraversion trait of the Big Five personality exhibits a positive association, and the conscientiousness trait exhibits a negative association with plagiarism tendencies. Our result suggests that the policy of educating students about academic integrity will have a limited impact as long as students perceive an opportunity for plagiarism to be present. We explain our results using the Fraud triangle model.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.