Computer Science > Artificial Intelligence
[Submitted on 11 Jul 2024 (v1), last revised 22 Jul 2024 (this version, v2)]
Title:CAD-Prompted Generative Models: A Pathway to Feasible and Novel Engineering Designs
View PDF HTML (experimental)Abstract:Text-to-image generative models have increasingly been used to assist designers during concept generation in various creative domains, such as graphic design, user interface design, and fashion design. However, their applications in engineering design remain limited due to the models' challenges in generating images of feasible designs concepts. To address this issue, this paper introduces a method that improves the design feasibility by prompting the generation with feasible CAD images. In this work, the usefulness of this method is investigated through a case study with a bike design task using an off-the-shelf text-to-image model, Stable Diffusion 2.1. A diverse set of bike designs are produced in seven different generation settings with varying CAD image prompting weights, and these designs are evaluated on their perceived feasibility and novelty. Results demonstrate that the CAD image prompting successfully helps text-to-image models like Stable Diffusion 2.1 create visibly more feasible design images. While a general tradeoff is observed between feasibility and novelty, when the prompting weight is kept low around 0.35, the design feasibility is significantly improved while its novelty remains on par with those generated by text prompts alone. The insights from this case study offer some guidelines for selecting the appropriate CAD image prompting weight for different stages of the engineering design process. When utilized effectively, our CAD image prompting method opens doors to a wider range of applications of text-to-image models in engineering design.
Submission history
From: Jude Abishek Rayan [view email][v1] Thu, 11 Jul 2024 17:07:32 UTC (10,044 KB)
[v2] Mon, 22 Jul 2024 06:49:45 UTC (10,043 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.