Computer Science > Cryptography and Security
[Submitted on 1 Jul 2024]
Title:SecGenAI: Enhancing Security of Cloud-based Generative AI Applications within Australian Critical Technologies of National Interest
View PDFAbstract:The rapid advancement of Generative AI (GenAI) technologies offers transformative opportunities within Australia's critical technologies of national interest while introducing unique security challenges. This paper presents SecGenAI, a comprehensive security framework for cloud-based GenAI applications, with a focus on Retrieval-Augmented Generation (RAG) systems. SecGenAI addresses functional, infrastructure, and governance requirements, integrating end-to-end security analysis to generate specifications emphasizing data privacy, secure deployment, and shared responsibility models. Aligned with Australian Privacy Principles, AI Ethics Principles, and guidelines from the Australian Cyber Security Centre and Digital Transformation Agency, SecGenAI mitigates threats such as data leakage, adversarial attacks, and model inversion. The framework's novel approach combines advanced machine learning techniques with robust security measures, ensuring compliance with Australian regulations while enhancing the reliability and trustworthiness of GenAI systems. This research contributes to the field of intelligent systems by providing actionable strategies for secure GenAI implementation in industry, fostering innovation in AI applications, and safeguarding national interests.
Submission history
From: Christoforus Yoga Haryanto [view email][v1] Mon, 1 Jul 2024 09:19:50 UTC (728 KB)
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.