Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 May 2024 (v1), revised 17 Jun 2024 (this version, v2), latest version 7 Apr 2025 (v4)]
Title:TetSphere Splatting: Representing High-Quality Geometry with Lagrangian Volumetric Meshes
View PDF HTML (experimental)Abstract:We present TetSphere splatting, an explicit, Lagrangian representation for reconstructing 3D shapes with high-quality geometry. In contrast to conventional object reconstruction methods which predominantly use Eulerian representations, including both neural implicit (e.g., NeRF, NeuS) and explicit representations (e.g., DMTet), and often struggle with high computational demands and suboptimal mesh quality, TetSphere splatting utilizes an underused but highly effective geometric primitive -- tetrahedral meshes. This approach directly yields superior mesh quality without relying on neural networks or post-processing. It deforms multiple initial tetrahedral spheres to accurately reconstruct the 3D shape through a combination of differentiable rendering and geometric energy optimization, resulting in significant computational efficiency. Serving as a robust and versatile geometry representation, Tet-Sphere splatting seamlessly integrates into diverse applications, including single-view 3D reconstruction, image-/text-to-3D content generation. Experimental results demonstrate that TetSphere splatting outperforms existing representations, delivering faster optimization speed, enhanced mesh quality, and reliable preservation of thin structures.
Submission history
From: Minghao Guo [view email][v1] Thu, 30 May 2024 17:35:49 UTC (48,019 KB)
[v2] Mon, 17 Jun 2024 16:51:15 UTC (48,003 KB)
[v3] Wed, 2 Oct 2024 18:07:58 UTC (45,577 KB)
[v4] Mon, 7 Apr 2025 23:27:13 UTC (44,668 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.