Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 14 Jul 2023 (v1), last revised 27 Nov 2024 (this version, v5)]
Title:Atlas-Based Interpretable Age Prediction In Whole-Body MR Images
View PDF HTML (experimental)Abstract:Age prediction is an important part of medical assessments and research. It can aid in detecting diseases as well as abnormal ageing by highlighting potential discrepancies between chronological and biological age. To improve understanding of age-related changes in various body parts, we investigate the ageing of the human body on a large scale by using whole-body 3D images. We utilise the Grad-CAM method to determine the body areas most predictive of a person's age. In order to expand our analysis beyond individual subjects, we employ registration techniques to generate population-wide importance maps that show the most predictive areas in the body for a whole cohort of subjects. We show that the investigation of the full 3D volume of the whole body and the population-wide analysis can give important insights into which body parts play the most important roles in predicting a person's age. Our findings reveal three primary areas of interest: the spine, the autochthonous back muscles, and the cardiac region, which exhibits the highest importance. Finally, we investigate differences between subjects that show accelerated and decelerated ageing.
Submission history
From: Sophie Starck [view email][v1] Fri, 14 Jul 2023 16:04:03 UTC (24,901 KB)
[v2] Tue, 29 Aug 2023 12:57:17 UTC (24,903 KB)
[v3] Thu, 2 Nov 2023 12:01:19 UTC (24,913 KB)
[v4] Tue, 20 Aug 2024 08:52:17 UTC (40,573 KB)
[v5] Wed, 27 Nov 2024 10:26:18 UTC (40,503 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.