Computer Science > Computers and Society
[Submitted on 8 Jul 2023]
Title:Typology of Risks of Generative Text-to-Image Models
View PDFAbstract:This paper investigates the direct risks and harms associated with modern text-to-image generative models, such as DALL-E and Midjourney, through a comprehensive literature review. While these models offer unprecedented capabilities for generating images, their development and use introduce new types of risk that require careful consideration. Our review reveals significant knowledge gaps concerning the understanding and treatment of these risks despite some already being addressed. We offer a taxonomy of risks across six key stakeholder groups, inclusive of unexplored issues, and suggest future research directions. We identify 22 distinct risk types, spanning issues from data bias to malicious use. The investigation presented here is intended to enhance the ongoing discourse on responsible model development and deployment. By highlighting previously overlooked risks and gaps, it aims to shape subsequent research and governance initiatives, guiding them toward the responsible, secure, and ethically conscious evolution of text-to-image models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.