Computer Science > Computation and Language
[Submitted on 8 Feb 2022]
Title:RNN Transducers for Nested Named Entity Recognition with constraints on alignment for long sequences
View PDFAbstract:Popular solutions to Named Entity Recognition (NER) include conditional random fields, sequence-to-sequence models, or utilizing the question-answering framework. However, they are not suitable for nested and overlapping spans with large ontologies and for predicting the position of the entities. To fill this gap, we introduce a new model for NER task -- an RNN transducer (RNN-T). These models are trained using paired input and output sequences without explicitly specifying the alignment between them, similar to other seq-to-seq models. RNN-T models learn the alignment using a loss function that sums over all alignments. In NER tasks, however, the alignment between words and target labels are available from the human annotations. We propose a fixed alignment RNN-T model that utilizes the given alignment, while preserving the benefits of RNN-Ts such as modeling output dependencies. As a more general case, we also propose a constrained alignment model where users can specify a relaxation of the given input alignment and the model will learn an alignment within the given constraints. In other words, we propose a family of seq-to-seq models which can leverage alignments between input and target sequences when available. Through empirical experiments on a challenging real-world medical NER task with multiple nested ontologies, we demonstrate that our fixed alignment model outperforms the standard RNN-T model, improving F1-score from 0.70 to 0.74.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.