Computer Science > Data Structures and Algorithms
[Submitted on 16 Feb 2022]
Title:SAT Backdoors: Depth Beats Size
View PDFAbstract:For several decades, much effort has been put into identifying classes of CNF formulas whose satisfiability can be decided in polynomial time. Classic results are the linear-time tractability of Horn formulas (Aspvall, Plass, and Tarjan, 1979) and Krom (i.e., 2CNF) formulas (Dowling and Gallier, 1984). Backdoors, introduced by Williams Gomes and Selman (2003), gradually extend such a tractable class to all formulas of bounded distance to the class. Backdoor size provides a natural but rather crude distance measure between a formula and a tractable class. Backdoor depth, introduced by Mählmann, Siebertz, and Vigny (2021), is a more refined distance measure, which admits the utilization of different backdoor variables in parallel. Bounded backdoor size implies bounded backdoor depth, but there are formulas of constant backdoor depth and arbitrarily large backdoor size.
We propose FPT approximation algorithms to compute backdoor depth into the classes Horn and Krom. This leads to a linear-time algorithm for deciding the satisfiability of formulas of bounded backdoor depth into these classes. We base our FPT approximation algorithm on a sophisticated notion of obstructions, extending Mählmann et al.'s obstruction trees in various ways, including the addition of separator obstructions. We develop the algorithm through a new game-theoretic framework that simplifies the reasoning about backdoors.
Finally, we show that bounded backdoor depth captures tractable classes of CNF formulas not captured by any known method.
References & Citations
export BibTeX citation
Loading...
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.