Computer Science > Machine Learning
[Submitted on 7 Jan 2022 (v1), revised 15 Mar 2022 (this version, v2), latest version 19 May 2022 (v3)]
Title:Optimizing the Communication-Accuracy Trade-off in Federated Learning with Rate-Distortion Theory
View PDFAbstract:A significant bottleneck in federated learning is the network communication cost of sending model updates from client devices to the central server. We propose a method to reduce this cost. Our method encodes quantized updates with an appropriate universal code, taking into account their empirical distribution. Because quantization introduces error, we select quantization levels by optimizing for the desired trade-off in average total bitrate and gradient distortion. We demonstrate empirically that in spite of the non-i.i.d. nature of federated learning, the rate-distortion frontier is consistent across datasets, optimizers, clients and training rounds, and within each setting, distortion reliably predicts model performance. This allows for a remarkably simple compression scheme that is near-optimal in many use cases, and outperforms Top-K, DRIVE, 3LC and QSGD on the Stack Overflow next-word prediction benchmark.
Submission history
From: Nicole Mitchell [view email][v1] Fri, 7 Jan 2022 20:17:33 UTC (1,732 KB)
[v2] Tue, 15 Mar 2022 16:45:09 UTC (1,883 KB)
[v3] Thu, 19 May 2022 18:18:32 UTC (4,110 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.