Computer Science > Machine Learning
[Submitted on 9 Oct 2021 (v1), last revised 17 Nov 2022 (this version, v3)]
Title:Self-explaining Neural Network with Concept-based Explanations for ICU Mortality Prediction
View PDFAbstract:Complex deep learning models show high prediction tasks in various clinical prediction tasks but their inherent complexity makes it more challenging to explain model predictions for clinicians and healthcare providers. Existing research on explainability of deep learning models in healthcare have two major limitations: using post-hoc explanations and using raw clinical variables as units of explanation, both of which are often difficult for human interpretation. In this work, we designed a self-explaining deep learning framework using the expert-knowledge driven clinical concepts or intermediate features as units of explanation. The self-explaining nature of our proposed model comes from generating both explanations and predictions within the same architectural framework via joint training. We tested our proposed approach on a publicly available Electronic Health Records (EHR) dataset for predicting patient mortality in the ICU. In order to analyze the performance-interpretability trade-off, we compared our proposed model with a baseline having the same set-up but without the explanation components. Experimental results suggest that adding explainability components to a deep learning framework does not impact prediction performance and the explanations generated by the model can provide insights to the clinicians to understand the possible reasons behind patient mortality.
Submission history
From: Sayantan Kumar [view email][v1] Sat, 9 Oct 2021 15:32:17 UTC (1,938 KB)
[v2] Sat, 21 May 2022 02:39:09 UTC (1,144 KB)
[v3] Thu, 17 Nov 2022 17:19:31 UTC (578 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.