Computer Science > Cryptography and Security
[Submitted on 7 Sep 2020]
Title:Efficient Quantification of Profile Matching Risk in Social Networks
View PDFAbstract:Anonymous data sharing has been becoming more challenging in today's interconnected digital world, especially for individuals that have both anonymous and identified online activities. The most prominent example of such data sharing platforms today are online social networks (OSNs). Many individuals have multiple profiles in different OSNs, including anonymous and identified ones (depending on the nature of the OSN). Here, the privacy threat is profile matching: if an attacker links anonymous profiles of individuals to their real identities, it can obtain privacy-sensitive information which may have serious consequences, such as discrimination or blackmailing. Therefore, it is very important to quantify and show to the OSN users the extent of this privacy risk. Existing attempts to model profile matching in OSNs are inadequate and computationally inefficient for real-time risk quantification. Thus, in this work, we develop algorithms to efficiently model and quantify profile matching attacks in OSNs as a step towards real-time privacy risk quantification. For this, we model the profile matching problem using a graph and develop a belief propagation (BP)-based algorithm to solve this problem in a significantly more efficient and accurate way compared to the state-of-the-art. We evaluate the proposed framework on three real-life datasets (including data from four different social networks) and show how users' profiles in different OSNs can be matched efficiently and with high probability. We show that the proposed model generation has linear complexity in terms of number of user pairs, which is significantly more efficient than the state-of-the-art (which has cubic complexity). Furthermore, it provides comparable accuracy, precision, and recall compared to state-of-the-art.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.